
CONVERGENCE OF POINCARÉ SERIES WITH TWO
COMPLEX COWEIGHTS

PAUL C. PASLES

Abstract. We examine convergence properties of Poincaré series with two
complex coweights and establish a converse to the well-known result of Peters-

son regarding absolute convergence of such series.

1. Motivation

In his classic tome on the subject, J. Lehner enumerates three goals in the study
of analytic automorphic forms ([5], p.155, referring in part to [10]):
1. Prove the existence of nonconstant automorphic forms of each [weight] and develop

their properties.

2. Provide analytical expressions (e.g., Poincaré series) which are automorphic forms.

3. Find a family of such analytical invariants which spans or at least is dense in the linear

space of automorphic forms of a given [weight].

For nonanalytic forms of arbitrary complex coweights, the first two goals are realized
for the theta group in [7]. In the current paper we explain the difficulty inherent
in the successful completion of this tripartite plan.

2. Preliminaries

We will be concerned with automorphicity on the modular and theta groups,
each of which is a special instance of a Hecke group.

Definition 2.1. For λ > 0, the Hecke group Gλ is defined by

Gλ = 〈Sλ, T 〉 ,

the 2 × 2 matrix group generated by

Sλ =
[

1 λ
0 1

]
and T =

[
0 −1
1 0

]
.

Gλ acts on the complex upper half-plane H = {z : Im z > 0} by linear fractional
transformations:

Mz =
az + b

cz + d
for M =

[
a b
c d

]
∈ Gλ, z ∈ H.

(Note that the distinct matrices M,−M represent the same transformation.) In
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the current work, we will focus on G1 and G2, known as the modular and theta
groups, respectively.

Exponentiation is to be interpreted using certain argument conventions which
we now delineate. For z, w ∈ C, z 6= 0, define zw = ew log z . Here, log z = log |z| +
i arg z, where log |z| is the principal branch (log 1 = 0), and

−π ≤ arg z < π.

We will make exceptions to this “unitary” convention whenever a binary convention
is more convenient (see below).

Definition 2.2. Let α, β ∈ C, λ > 0. We call υ : Gλ → C\ {0} a multiplier system
on Gλ of coweights α, β if |υ (Sλ)| = 1 and υ satisfies the consistency condition

υ (M3) (c3z + d3)
α (c3z̄ + d3)

β

= υ (M1) (c1M2z + d1)
α (c1M2z̄ + d1)

β
υ (M2) (c2z + d2)

α (c2z̄ + d2)
β

,

for all M1, M2 ∈ Gλ such that M1M2 = M3, Mj =
[

aj bj

cj dj

]
for j = 1, 2, 3, and

all z ∈ H. Here we observe the binary argument convention of the Petersson-Maass
tradition [6]:

−π ≤ arg (cz + d) < π

−π < arg (cz + d) ≤ π,

for z ∈ H, (c, d) ∈ R2\ {(0, 0)} .

That such multiplier systems actually exist for any given complex pair α, β has
been shown for the theta group [7]; for example, if α and β are arbitrary complex
numbers, then one such multiplier system on G2 of coweights α, β is generated by

υ (S2) = 1, υ (T ) = eπi(β−α)/2,

and the consistency condition.
Considering complex weights or coweights presents a significant complication to

automorphic forms theory. In the traditional situation (single real weight, e.g. [1]),
a multiplier system has absolute value identically one, and |υ| is a homomorphism
on Gλ. Unfortunately, as Petersson observed [11], multiplier systems do not have
absolute value identically one when the weight (or, in our setting, the difference of
the coweights) is nonreal. Unboundedness of υ seems to be the underlying cause
for divergence of the absolute Poincaré series in the case α− β /∈ R (Theorem 3.1);
however, as we shall explain in the last section, the reason is still deeper than this.

Another unexpected complication is that, while in the familiar case |υ| is a
homomorphism, it is easy to show that this remains true in the current setting if
and only if α − β ∈ R. (In one direction this statement is completely obvious, and
the other way follows by taking M1 = M2 = T in the consistency condition.) Thus,
in the general situation with complex coweights which we consider here, life has
become less simple.

We begin by calculating several special values of υ which will be needed to prove
the main result.
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Lemma 2.1. Let υ be a nonvanishing complex function on Gλ satisfying the con-
sistency condition in coweights α, β. Then:

(i) υ (I) = 1;

(ii) υ (−I) = ±eiπ(α−β);

(iii) υ (T ) = ±iβ−α+r , where r =





0 if υ (−I) = eiπ(α−β)

1 if υ (−I) = −eiπ(α−β);

(iv) Therefore, |υ| ≡ 1 ⇔ α − β ∈ R.

Proof. We will need to observe the binary argument convention carefully.

For (i), apply the consistency condition with M1 = M2 = I, recalling that υ is
nonvanishing.

(ii): Put M1 = M2 = −I to get 1 = [υ (−I)]2
(
e−iπα+iπβ

)2
, or υ (−I) = ±eiπ(α−β).

(iii): Let M1 = M2 = T. This gives:

υ (−I) eiπ(β−α) = [υ (T )]2 (−1/z)α (−1/z)β
zαzβ

= [υ (T )]2 eiπ(α−β),

so [υ (T )]2 = υ (−I) e2iπ(β−α). Therefore,

υ (T ) =





±e
iπ
2 (β−α) if υ (−I) = eiπ(α−β)

±e
iπ
2 (β−α+1) if υ (−I) = −eiπ(α−β).

This proves (iii).

(iv): We have

|υ (T )| =
∣∣∣±e

iπ
2 (β−α+r)

∣∣∣ = e
−π
2 Im(β−α+r) = e

−π
2 Im(β−α).

Thus, |υ| ≡ 1 ⇔ α − β ∈ R, since |υ (Sλ)| = 1 by assumption and |υ (T )| = 1 ⇔
α − β ∈ R. For if α − β /∈ R then |υ| is not identically one, and if α − β ∈ R then
|υ| = 1 on the generators of Gλ (and therefore |υ| ≡ 1 since |υ| is a homomorphism
in this case). �

Remark 2.1. It should be duly noted that the multiplier systems with two coweights
are actually the same as those with a single (complex) weight. For, let α, β ∈ Cand
let υ be a nonvanishing complex function on Gλ . The following are equivalent:

(i) υ satisfies the consistency condition for coweights α, β;
(ii) υ satisfies the consistency condition for coweights α+ω +2k, β +ω +2` for

all k, ` ∈ Z, ω ∈ C;
(iii) υ satisfies the consistency condition for coweights α − β, 0.

The proof is a simple calculation using the binary argument convention.
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3. Main result

The main result can be stated after two more definitions.

Definition 3.1. Let C, α, β, ω1, ω2, . . . , ωn ∈ C; γ, λ > 0; and

{an1,n2,m | 0 ≤ n1, n2 < ∞; 1 ≤ m ≤ M} ⊆ C,

with ∑

n1+n2=n

|an1,n2,m| = O (nγ) as n → +∞.

For z ∈ H, z = x + iy, define

f (z) =
M∑

m=1

yωm

∞∑

n1,n2=0

an1,n2,me2πiλ−1(n1z−n2z)
.

Let υ be a multiplier system on Gλ of coweights α, β satisfying υ (Sλ) = 1, υ (T ) =
C. If

z−αz−βf (−1/z) = Cf (z)

for all z ∈ H, we call f a nonanalytic automorphic form of coweights α, β and
multiplier system υ on Gλ. When λ = 1 or 2, f is called a nonanalytic modular
form.

The nonanalytic automorphic form (and its stepsibling the nonanalytic auto-
morphic integral) is studied extensively in [7] and [8]. For certain complex α, β
Knopp has considered integrals in the case where ωm ∈ Z and an1,n2,m = 0 for
|n1|+ |n2| > 0 [3], and he describes a Hecke theorem in one direction relating each
integral to a linear combination of Dirichlet series with exponential and gamma fac-
tors. For an account of results on forms in the “classical” case — f analytic, α ∈ R
and β = 0, and the underlying group is G1 or a subgroup — see [2]; in this situation
α is simply called the weight of f , cf. Remark 2.1. (Forms of integral or half-
integral weight are of particular interest for their number-theoretic applications.)
In a similar vein, Maass studied a type of real-analytic form on horocyclic groups,
with α − β real and allowing multiplier systems, in connection with eigenvalues of
the hyperbolic Laplacian [6].

Definition 3.2. Let α, β be complex numbers with Re (α + β) > 2, and let ρ ∈ Z,
λ ≥ 2. Suppose that υ is a multiplier system on Gλ of coweights α, β in the sense
of Definition 2.2, with υ (Sλ) = e2πiκ, 0 ≤ κ < 1. For z ∈ H, the ρth nonanalytic
parabolic Poincaré series of coweights α, β and multiplier system υ on Gλ is given
by the expression

Gυ,ρ
λ,α,β (z) =

∑
e2πi(ρ+κ)Mz/λυ (M )−1 (cz + d)−α (cz + d)−β

,

where this sum is taken over all lower rows in the group (M = Mc,d has lower row
c, d); this is the same as summing over the quotient group 〈Sλ〉�Gλ .

If α − β ∈ R, we can put k = α − β and s = 2β in the preceding definition
to obtain the so-called “Poincaré series with Hecke convergence factor,” usually
viewed as a function in the complex variables z and s — automorphic in z (and
real-analytic in z, z) for certain fixed s, and analytic in s for fixed z, so long as
z ∈ H and Re s > 2 − k; it may be used to compute the Fourier coefficients of
modular forms of small weight [12].
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Obviously the first step in proving the existence of a basis for the space of entire
forms using Petersson’s parabolic Poincaré series is to show that said series has
the correct transformation law. This is the consequence of a simple fact: when
α − β ∈ R, Gυ,ρ

λ,α,β(z) is absolutely uniformly convergent on sets of the form

Hε =
{
z ∈ C : Im z > ε, |Re z| < ε−1

}
, ε > 0.

(That is to say, the absolute series is uniformly convergent on Hε.) This was proved
by Petersson for the case β = 0 in [10] (see also [5]); we merely observe here that
the same proof works for β 6= 0, so long as α−β is real. From this we may conclude
that Gυ,ρ

λ,α,β is a real analytic function of z and z (analytic in z, when β = 0) and
that it satisfies the transformation law of an automorphic form. We will show that
not only does the converse statement hold — that is, absolute uniform convergence
fails when α−β /∈ R — but in fact the sum in the above expression for Gυ,ρ

λ,α,β(z) is
not even pointwise absolutely convergent when α−β is nonreal. This is the essence
of the next theorem, which we state for the special cases of the modular and theta
groups.

Theorem 3.1. Let Γ be a group of linear fractional transformations containing

S2 =
[

1 2
0 1

]
and T =

[
0 −1
1 0

]
, and let α, β ∈ C with Re(α + β) > 2 and

α − β /∈ R. If υ : Γ → C\ {0} satisfies the consistency condition for coweights
α, β with |υ (S2)| = 1, then

∑

M∈ StabΓ(∞)�Γ

∣∣∣e2πi(ρ+κ)Mz/λυ (M )−1 (cz + d)−α (cz + d)−β
∣∣∣

diverges for all ρ ∈ Z, κ ∈ [0, 1) and z ∈ H. In particular, the nonanalytic
Poincaré series on G1 and G2 are not absolutely convergent for α − β /∈ R. (I.e.,
Petersson’s hypothesis that the weight be real is not merely sufficient for absolute
uniform convergence, but also necessary.)

Proof. Put υ (S2) = e2πiσ. For integer n, an easy induction shows that

(S2T )n =
[

1 + n −n
n 1 − n

]
.

Thus, the lower rows of (S2T )n are distinct, and so
∑

M∈ StabΓ(∞)�Γ

>
∑

M=(S2T )n∈Γ

.

Now, although |υ| is not a homomorphism on Gλ (since α − β /∈ R — see remarks
in Section 2), it is still true that |υ ((S2T )n)| = |υ (S2T )|n. For, by the consistency
condition and Lemma 2.1,

υ (S2T ) = eπi(2σ+α−β+r), r ∈ {0, 1} ,

and thus,

υ
(
(S2T )n+1

)

= υ ((S2T )n (S2T ))

= υ ((S2T )n) υ (S2T )

[
n

(
2z−1

z

)
+ 1 − n

]α [
n

(
2z−1

z

)
+ 1 − n

]β
zαzβ

[(n + 1) z − n]α [(n + 1) z − n]β
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= υ ((S2T )n) eπi(2σ+α−β+r)

[
(n+1)z−n

z

]α [
(n+1)z−n

z

]β

zαzβ

[(n + 1) z − n]α [(n + 1) z − n]β
.

By the binary argument convention, then,

υ
(
(S2T )n+1

)
= υ ((S2T )n) eπi(2σ+α−β+r)θ,

where

θ = exp
{

(α − β)
[
log

(
(n + 1) z − n

z

)
+ log z − log ((n + 1) z − n)

]}

= exp {(α − β) L} .

Since Im z > 0, we also have

Im
[
(n + 1) z − n

z

]
, Im [(n + 1) z − n] > 0.

Thus,

arg
(n + 1) z − n

z
, arg z, arg [(n + 1) z − n] ∈ (0, π) .

Since
(n + 1) z − n

z
· z = (n + 1) z − n,

then,

L = log
(n + 1) z − n

z
+ log z − log ((n + 1) z − n)

= i

[
arg

(n + 1) z − n

z
+ arg z − arg ((n + 1) z − n)

]

∈ {0,±2πi} ;

and since all three arguments are in the range (0, π) , we have L = 0. Therefore
θ = 1, and so

υ
(
(S2T )n+1

)
= υ ((S2T )n) enπi(2σ+α−β+r) for n ∈ Z+.

Thus,
υ ((S2T )n) = enπi(2σ+α−β+r) = υ (S2T )n for n ∈ Z+.

Also, by the consistency condition,

υ (I) =
υ ((S2T )n) υ

(
(S2T )−n

)
·

·
[
n (S2T )−n

z + 1 − n
]α [

n (S2T )−n
z + 1 − n

]β

(−nz + 1 + n)α (−nz + 1 + n)β

= υ ((S2T )n) υ
(
(S2T )−n

)
·

·
[
n (1−n)z+n

−nz+1+n + 1 − n
]α [

n (1−n)z+n
−nz+1+n + 1 − n

]β

(−nz + 1 + n)α (−nz + 1 + n)β

= υ ((S2T )n) υ
(
(S2T )−n

)
.



CONVERGENCE OF POINCARÉ SERIES 7

Therefore υ
(
(S2T )−n

)
= υ ((S2T )n)−1 = υ (S2T )−n for n ∈ Z+, and so

υ ((S2T )n) = υ (S2T )n for n ∈ Z.

We have, then,
∑

M∈ StabΓ(∞)�Γ

∣∣∣∣e2πi(ρ+κ)(Mz)/λ
[
υ (M ) (cz + d)α (cz + d)β

]−1
∣∣∣∣

≥
∑

n∈Z

∣∣∣∣e2πi(ρ+κ)[(S2T )nz]/λ
[
υ ((S2T )n) (nz + 1 − n)α (nz + 1 − n)β

]−1
∣∣∣∣

=
∑

n∈Z
e

−2π
λ Im [ (1+n)z−n

nz+1−n ] |υ (S2T )|−n
∣∣∣(nz + 1 − n)−α (nz + 1 − n)−β

∣∣∣

=
∑

n∈Z
e

−2π
λ Im

[
( 1

n
+1)z−1

z+ 1
n

−1

]
[
e

−π
2 Im(β−α)n |n|Re(α+β)

∣∣∣
(
z + 1

n
− 1

)α (
z + 1

n
− 1

)β
∣∣∣
]−1

.

The individual terms of this last sum are asymptotic to

e
nπ
2 Im(β−α) |n|−Re(α+β)

∣∣∣(z − 1)α (z − 1)β
∣∣∣
−1

,

so (since z is fixed) convergence of this last series is equivalent to convergence of

∑

n∈Z

[
e

π
2 Im(β−α)

]n

|n|−Re(α+β)
.

Since Re (α + β) > 2 and Im (α − β) 6= 0, then, we have proved divergence of the
original series. (Here we see where the assumption Im(α − β) 6= 0 comes into play.)

To get the last statement of the theorem, take λ = 1, κ = 0 and Γ = G1, or else
λ = 2, κ = 0 and Γ = G2. �

This shows that the nonanalytic Poincaré series on G1 or G2 are not absolutely
convergent if α−β /∈ R. The converse statement (that absolute convergence follows
from α−β ∈ R) can be shown easily by adapting the proof for the case β = 0 given
in [5] .

Remark 3.1. If one allows more general multiplier systems, say without assuming
|υ (Sλ)| = 1, then the condition necessary for this divergence proof to work is now
the more complicated requirement

Im(α − β) + 2π−1 log |υ (S2)| 6= 0.

However, such multiplier systems do not occur often in the literature and so we do
not consider them here.

Thus, Theorem 3.1 shows that the parabolic Poincaré series construction does
not work for arbitrary complex coweights α, β. Nevertheless, when the coweight-
difference is real, this series can be generalized in many useful ways, including one
which we believe to be new and which will be explored further in the sequel [9]:

Let λ ≥ 2, ρj ∈ Z and γj ∈ C for 1 ≤ j ≤ 4. Let α, β be complex numbers

satisfying the conditions Re (α + β) > 2 and α − β =
4∑

j=1

γj ∈ R. Suppose that

υj : Gλ → C\ {0} satisfies the consistency condition in coweights γj , 0 for each j.

(Thus, by Remark 2.1, υ =
∏

υj satisfies the consistency condition in coweights
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α, β.) Finally, write υj (Sλ) = e2πiκj , 0 ≤ Re κj < 1, and suppose that
4∑

j=1

κj ∈ R.

Supressing all parameters, we put

f (z) =
∑ e

2πi
λ [(ρ1+κ1)Mz+(ρ2+κ2)Mz+(ρ3+κ3)M(−z)+(ρ4+κ4)M(−z)]

υ (M ) (cz + d)α (cz + d)β
,

z ∈ H, summing as before over M = Mc,d ∈ 〈Sλ〉 \Gλ , that is, over all lower rows of
Gλ.

Theorem 3.2.
(i) The series defining f is absolutely uniformly convergent on Hε for ε > 0.
(ii) f is a real analytic function in z and z for Im z > 0.
(iii) f (z + λ) = υ (Sλ) f (z) .
(iv) f satisfies the transformation law

z−αz−βf (−1/z) = υ (T ) f (z) .

However, even if υ (Sλ) = 1, in general f still is not quite a nonanalytic auto-
morphic form in the sense of Definition 3.1, as it lacks a quasi-Fourier expansion of
the appropriate type; see [9].

Proof. First, observe that as a consequence of the consistency condition on υj, each
of the four expressions

e
2πi
λ (ρ1+κ1)Mz

υ1 (M )
,

e
2πi
λ (ρ2+κ2)Mz

υ2 (M )
,

e
2πi
λ (ρ3+κ3)M(−z)

υ3 (M )
,

e
2πi
λ (ρ4+κ4)M(−z)

υ4 (M )

depends only on the lower row of M. (M1, M2 ∈ Gλ have the same lower row iff
M1 = SλM2 for some integer n.) Ergo, the product of these four factors is likewise
dependent only on the lower row of the matrix M. This shows that f is well-defined.

The proof of (i) is completely analogous to the classical case (details of which
may be found in [5]). Incidentally, if κ is real and λ = 1 or 2, the necessity of taking
α − β ∈ R is clear by the exact same calculation which appeared in the proof of
Theorem 3.1.

Since
H =

⋃

ε>0

Hε,

conclusion (ii) follows directly from (i) and basic analysis. The rest of the theorem
follows from absolute convergence and the consistency condition. �

We note that Remark 3.1 is valid here as well.

4. Final comments

It is interesting to contrast Theorem 3.1 with recent work of Knopp and Mason
[4] on a type of generalized modular form which is applicable to algebraic conformal
field theory.

In a result which seems contradictory to Theorem 3.1, they showed that for
certain congruence subgroups of G1 — that is to say, subgroups which contain some
principal congruence subgroup

Γ (N ) = {V ≡ ±I (mod N )} , N ∈ Z+
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— Poincaré series of large enough real weight do converge, despite the fact that
they have allowed multiplier systems whose absolute value is unbounded (as we did
here).

It seemed in the proof of Theorem 3.1 that convergence or divergence of Gρ,ν
λ,α,β

was determined by the growth of υ. Yet, in [4], unbounded multiplier systems are
not an impediment to convergence. These two results appear to be at odds with
one another.

Nevertheless, the multiplier systems in [4] are “parabolic”:

υ (P ) = 1 whenever trace (P ) = ±2.

Moreover, it is not the growth of the multiplier system alone which determines
convergence or divergence, but rather that together with the choice of α, β. The
forms in [4] have real weight, so the proof of Theorem 3.1 is not in dispute.

The construction of a basis for the space of nonanalytic automorphic forms of
arbitrary complex coweights remains an open problem.
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