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NONANALYTIC AUTOMORPHIC INTEGRALS

PAUL C. PASLES

Abstract. In this paper we prove a Riemann-Hecke-Bochner correspondence

for nonanalytic automorphic integrals on the Hecke groups. We also present

several applications of this theorem. One of these settles a question, posed by

M. Knopp in 1983, regarding the Mellin transform of modular integrals .

1. Introduction

In this work we continue the line of inquiry which commenced with [26]. In

that earlier paper, we discussed (but did not prove) a Riemann-Hecke-Bochner

correspondence theorem for nonanalytic automorphic integrals, that is, functions of

the form

f (z) =
M∑

m=1

ywm

∞∑

n1,n2=0

an1,n2,m exp
{

2πi

λ
(n1z − n2z)

}
,

y = Imz > 0, which satisfy a transformation law:

z−α (z)−β
f (−1/z) = Cf (z) + q (z) ;

here wm, an1,n2,m, α, β, C are complex numbers and λ is a positive real, with the

an1,n2,m adhering to a further technical requirement. (To make this transformation

law meaningful, of course, q needs to be described more explicitly. We will assume

that q is an axial log-polynomial sum; that is,
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q (iy) =
J∑

j=1

(iy)αj

T∑

t=0

βj,t [log (iy)]t for y > 0,

with αj and βj,t complex.)

Our motivation in defining integrals thusly is threefold. First, this space of quasi-

invariant functions is preserved under the weight-changing operators outlined in [22,

5, 14, 26]. Moreover, it includes all of the familar examples of entire automorphic

integrals (e.g., Hurwitz’s weight 2 Eisenstein series, the classical theta and eta

functions, and so forth), and thereby is indeed a generalization of the more familiar

concept. Finally, as we will show, it is possible to state a Hecke correspondence for

such functions in a natural way.

Our goal is to demonstrate a correspondence which matches each nonanalytic

automorphic integral with a linear combination of Dirichlet series, said linear combi-

nation satisfying a functional equation similar to that of the Riemann zeta function.

Along the way we will acquire several results which are immediate consequences of

the main theorem.

2. Definitions

The Hecke group is Gλ =
〈(

1 λ

0 1

)
,

(
0 −1
1 0

)〉
, λ > 0. For brevity, we refer

to these two generators as Sλ and T respectively. The elements of Gλ act on

H = {z ∈ C : Imz > 0} as linear fractional transformations. Of particular interest

is the modular group G1.

For z, w ∈ C, z 6= 0, we define zw = ew log z. Here log z = log |z| + i arg z, with

log |z| denoting the principal branch of the logarithm (log 1 = 0); arg z is taken in

the interval [−π, π), except when a ‘binary’ convention is more convenient (it will

always be clear from context which of these is intended). A multiplier system on
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Gλ of coweights α, β ∈ C is a function υ : Gλ → C satisfying |υ (Sλ)| = 1, υ (T ) 6= 0

and the consistency condition:

υ (M3) (c3z + d3)
α (c3z̄ + d3)

β =

υ (M1) (c1M2z + d1)
α (c1M2z̄ + d1)

β υ (M2) (c2z + d2)
α (c2z̄ + d2)

β ,

for all M1, M2 ∈ Gλ, M1M2 = M3, Mj =
(

aj bj

cj dj

)
for j = 1, 2, 3, z ∈ H, where we

interpret the consistency condition according to the binary argument convention:

−π ≤ arg (cz + d) < π and −π < arg (cz + d) ≤ π, for z ∈ H, |c| + |d| 6= 0. (See,

for example, [22].)

In this work we consider only multiplier systems which satisfy υ (Sλ) = 1. More

general multiplier systems are examined in [25].

Definition 2.1. Let {an}∞n=0 ⊆ C such that an = O (nγ) as n → ∞, for some

γ ∈ R+. Write

f (z) =
∞∑

n=0

ane2πinz/λ,

z ∈ H. Let υ be a multiplier system on Gλ of real coweights k, 0 with υ (Sλ) = 1. If

z−kf (−1/z) = υ (T ) f (z) + q (z) for all z ∈ H, where

q (z) =
J∑

j=1

zαj

T∑

t=0

βj,t (log z)t
,

αj, βj,t ∈ C, we call f an automorphic integral of coweights α, β and multi-

plier system υ on Gλ. The function q(z) is called a log-polynomial sum (more

specifically, the log-polynomial period function for f).

Remark on terminology. Some authors refer to these as entire, to distinguish

them from general automorphic integrals, which may have poles in H or at the

infinite cusp.
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The log-polynomial sums which occur as period functions for (entire) automor-

phic integrals of coweights k, 0 have been completely characterized in the cases

k > 2, υ (Sλ) = 1 and k > 0, υ (Sλ) 6= 1 [8, 9].

Definition 2.2. Let {an1,n2,m | 0 ≤ n1, n2 < ∞, 1 ≤ m ≤ M} ⊆ C, with

∑

n1+n2=n

an1,n2,m = O (nγ) , γ > 0, as n → +∞.

Put

f (z) =
M∑

m=1

∞∑

n1,n2=0

ywm an1,n2,me
2πi

λ (n1z−n2z),

z = x + iy ∈ H. (w1, ...wM ∈ C.)

Let υ be a multiplier system on Gλ of complex coweights α, β with υ (Sλ) = 1. If

f satisfies

z−α (z)−β
f (−1/z) = υ (T ) f (z) + q (z)

for all z ∈ H, where

q (iy) =
J∑

j=1

(iy)αj

T∑

t=0

βj,t [log (iy)]t , y > 0,

we call f a nonanalytic automorphic integral of coweights α, β and multiplier

system υ on Gλ. ( q is the axial log-polynomial period function for f .)

If one writes f as a function of u = e2πiz/λ, one obtains the “q-like” series [24]:

g (u) =
M∑

m=1

∞∑

n1,n2=0

bn1,n2,mun1un2 logwm |u| , 0 < |u| < 1.

A restricted case of the nonanalytic automorphic integral was considered by

Knopp [18]: namely, the case α = −β ∈ Z, {ωm} ⊆ Z, and an1,n2,m = 0 for

|n1| + |n2| > 0. Also, not all axial log-polynomial periods were considered there,

but only those of the form

q (z) =
∑

finite

[
α1z

β1zβ2 (log z)t + α2z
γ1zγ2 (log z)u

]

In particular, Knopp developed a direct Hecke theorem for those integrals.
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A remark regarding the last two definitions: If λ = 1, f is said to be modular ; if

q ≡ 0, the (analytic or nonanalytic) integral is called a form.

In certain contexts one may replace the (axial) log-polynomial sum by an (axial)

rational function. Rational period functions have been the subject of a considerable

body of recent research [2, 3, 4, 6, 7, 10, 11, 13, 14, 16, 23].

Remark 2.1. Some authors assume seemingly weaker conditions for Definition

2.1, namely that f is entire, periodic, and bounded at i∞, and the rest of the

definition follows. Observe that no such set of conditions will replace Definition

2.2; real-analyticity and periodicity do not necessarily imply the quasi-exponential

shape we specified, nor does the function need to be bounded at i∞.

Nevertheless, we feel that this definition is a natural one for the reasons stated

in the introduction.

3. Riemann-Hecke-Bochner Correspondence

The Riemann-Hecke-Bochner Correspondence asserts that there is a relationship

between exponential series which satisfy a transformation law and Dirichlet series

with a certain type of functional equation. Such theorems originate with Riemann’s

proof [27] of the functional equation for his eponymous zeta function

ζ (s) =
∞∑

n=1

n−s,

by way of the classical theta function

ϑ (z) = 1 + 2
∞∑

n=1

eπin2z,

a modular form of weight 1
2 on G2 [17]. ζ and ϑ are connected by the Mellin trans-

form and its inverse; this connection was later generalized to the case of automorphic

forms by Hecke [12] and still later to automorphic integrals by Bochner [1; see also
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30], who allowed “residual” period functions. These were later described explicitly

as log-polynomial sums by Knopp, who also elaborated on the relationship between

the period functions and the poles of the Dirichlet series; Knopp’s incarnation of

the correspondence follows [19, 20]:

Theorem 3.1. Let k ∈ R, C ∈ C, λ > 0. Suppose

f (z) =
∞∑

n=0

ane2πinz/λ

for z ∈ H, where an = O (nγ ) as n → ∞, for some γ > 0. Put

Φ (s) =
(

2π

λ

)−s

Γ (s)
∞∑

n=1

ann−s,

Res large. Then (a) ⇔ (b), where:

(a) z−kf (−1/z) = Cf (z) + q (z) for all z ∈ H, with q (z) =
J∑

j=1

zαj

Mj∑
t=0

βj,t (log z)t

(αj, βj,t ∈ C).

(b) (i) Φ has a meromorphic continuation to C with at most a finite number of

poles, and

(ii) Φ is bounded in each set of the form

L (σ1, σ2, t0) = {s = σ + it : σ1 ≤ σ ≤ σ2, |Imt| ≥ t0} ,

whenever σ1, σ2 ∈ R and t0 > max j |Imαj| (figure 1), and

(iii) Φ has the functional equation:

Φ (k − s) = eπik/2Φ (s) .

Knopp refers to the set L (σ1, σ2, t0) as a lacunary vertical strip.

Supplement to Theorem 3.1. The locations and orders of the poles of Φ are

related to q. In fact, the principal part of Φ at each pole can be written explicitly

in terms of the αj’s and βj,t’s.
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Again, one may also consider rational q here instead of log-polynomials [10, 11,

4].

We omit the proof of Theorem 3.1, since it is a consequence of our next theorem.

Note: The above condition t0 > max j |Imαj| is a slight, but essential, correction

to the statement which appears in [19].

It is important to observe that the transition from forms to integrals with log-

polynomial period functions does not disturb the functional equation of Φ; the only

difference is in the placement and orders of the poles of Φ. Likewise, our foray into

the nonanalytic arena will leave the functional equation essentially undisturbed; the

main difference is that now Φ is a linear combination of Dirichlet series with expo-

nential and gamma factors. This result, which follows, is suggested by unpublished

work of Knopp ([18]; see also Remark 6 in the next section).

Theorem 3.2. Let λ, γ > 0; C, α, β ∈ C; and wm, an1,n2,m ∈ C, wm distinct, for

m = 1, 2, ..., M and n1, n2 ∈ Z+ ∪ {0} . Define cn,m =
∑

n1+n2=n
an1,n2,m for m =

1, 2, ...,M and n ∈ Z+ ∪ {0} . Assume also that for each m,
∑

n1+n2=n
|an1,n2,m| =

O (nγ) as n → ∞. For z = x + iy ∈ H, define the real-analytic periodic function

f (z) =
M∑

m=1
ywm

∞∑
n1,n2=0

an1,n2,m exp
{

2πi

λ
(n1z − n2z)

}
. Also define

Φf (s) =
M∑

m=1
(2π/λ)−s−wm Γ (s + wm)

∞∑
n=1

cn,mn−s−wm , for Re s large.

Then the following are equivalent:

(A) z−α (z)−β
f (−1/z) = Cf (z) + q (z) for z ∈ H, with q (iy) =

J∑
j=1

(iy)αj

Mj∑
t=0

βj,t (log iy)t , for y > 0. (αj, βj,t ∈ C, αj distinct, βj,Mj 6= 0 ∀j).

(B) (i) Φf (s) has meromorphic continuation to C with at most a finite number of

poles;

(ii) Φf (s) is bounded in sets of the form
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L (σ1, σ2, t0) = {s = σ + it : σ1 ≤ σ ≤ σ2, |Im t| ≥ t0}

whenever σ1, σ2 ∈ R and

t0 > max j |Imαj| + max
m

|Imwm| + max
m

|Im(wm + α + β)| ;

(iii) Φf (α + β − s) = iα−βC Φf (s), s ∈ C.

Corollary (to the proof of Theorem 3.2). When A, B hold, it is also true that

Φf − r − L is entire, where

r (s) =
M∑

m=1

co,m

[
iα−βC

s − (α + β + wm)
− 1

s + wm

]

and

L (s) =
J∑

j=1

iα−β+αj

Mj∑

t=0

βj,t

t∑

`=0

(
t

`

)(
iπ

2

)t−`

`! [s − (α + β + αj)]
−`−1

= −C−1
J∑

j=1

iαj

Mj∑

t=0

βj,t

t∑

`=0

(−1)`

(
t

`

)(
iπ

2

)t−`

`! (s + αj)
−`−1

.

Thus the location of the poles of Φf and their orders are obvious. In particular, we

have the set identity {α + β + αj}J
j=1 = {−αj}J

j=1 .

Theorem 3.2 and the corollary are proved in the final section.

4. Remarks

1. Theorem 3.2 still holds even if f is defined only on the positive imaginary axis

(as
∑
m

(iy)wm
∑
n

cn,me−2πny/λ). Thus, periodicity and real-analyticity are unneces-

sary hypotheses, but we will retain them because we are interested in nonanalytic

integrals on H. (For one thing, there is ambiguity regarding the meaning of weight-

changing operators such as

δα,β =
∂

∂z
+

α

2iy
, ∂α,β = y2 ∂

∂z
+

βiy

2
,

etc. when they are applied to functions only defined on iR+.)
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2. It is tempting to conclude that Theorem 3.2 can be reduced to the analytic case

(Theorem 3.1), but while there does exist f1 analytic on H with (f − f1) |iR+= 0,

f1 does not transform correctly under Sλ if M > 1. Thus, while f1 may be useful to

us (and we will have cause to refer to just such a “corresponding analytic function”

in the proof of Lemma 6.1), it is not an analytic integral in general.

3. Φf is the Mellin transform of f, or more precisely of f −
M∑

m=1
co,mi−wmzwm .

That is,

Φf (s) =
∫ ∞

0

[
f (iy) −

M∑

m=1

co,mi−wm (iy)wm

]
ys−1dy,

for Res large.

4. In Theorem 3.2, take β = 0, α ∈ R, M = 1 and w1 = 0 (so that f, q are analytic)

to get Theorem 3.1.

5. In Theorem 3.1, Φ determines f up to the constant term. In Theorem 3.2,

however, Φf determines only f (iy) uniquely (again, up to the constant term), not

f (z) . Thus, Theorem 3.2 is a one-to-one correspondence between linear combina-

tions of Dirichlet series satisfying a functional equation, and equivalence classes of

quasi-exponential functions satisfying a transformation law, where we say two func-

tions are equivalent if their difference vanishes identically on the positive imaginary

axis.

6. Theorem 3.2 was inspired by a result presented in [18], which is a direct theorem

(A ⇒ B) for the case β = −α ∈ Z, C = 1, {wm} ⊆ Z and an1,n2,m supported only

when n1 or n2 = 0. Also, no converse was given there, although it was suggested

that one should be found. In addition, the period functions had the form

∑

finite

(
α1z

β1 (z)β2 (log z)t + α2z
γ1 (z)γ2 [log (−z)]u

)
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(αj, βj, γj ∈ C, t, u ∈ Z); this is not as general as the axial log-polynomial sum as

we have defined it, which allows

∑

finite

αj,t,u,vz
βj (z)β′

j (log z)t [log (−z)]u (log iy)v
,

for example. Whether the latter sum ever actually occurs as a period function is

as yet unknown. What is certain, though, is that if the period functions considered

by Knopp do occur, then so do more general period functions which are obtained

from these using the operator f → ywf, w ∈ C [26].

7. In keeping with the usual shorthand, we refer to theorems of the type A ⇒ B

as “direct” and B ⇐ A as “converse” (although Hecke himself did not use this

terminology).

5. Applications

Theorem 3.2 has two immediate applications. First we will use it to derive a

new proof for an estimate on the growth of the Mellin transform of an automorphic

integral (namely, that Φf (s) vanishes faster than any rational function of Ims, as

s → ±∞ within any vertical strip). Then we will use Theorem 3.2 to disprove a

conjecture from [14] involving the weight-changing operator δk = d
dz + k

2iy , k ∈

Z, which preserves automorphicity on the linear fractional transformation group

Gλ. Each of these applications further motivates our nonanalytic perspective by

providing insight into the analytic milieu.

Theorem 5.1. (Growth estimate) Let f be an automorphic integral on H with

log-polynomial period function, and let Φf (s) be the Mellin transform of f. Then

Φf (s) = o (|Im s|ρ) as Im s → ±∞, |Re s| < A, for any ρ ∈ R.
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Proof. f is an (analytic) automorphic integral of weight α ∈ C. Then by [26], δNf

is a nonanalytic automorphic integral of coweights α + 2N, 0 for all N ∈ Z+ ∪{0} .

Theorem 3.1⇒ Φf is bounded in the “lacunary vertical strips” L (σ1, σ2, t0) such

that t0 > max |αj| (αj defined as in Theorem 3.1).

It was observed in [14] that for f analytic,

Φδf (s) = i
(
s − 1− α

2

)
Φf (s − 1) , ∀s ∈ C. (5.1)

To prove this identity, integrate by parts directly, or else use the functional equa-

tion for the gamma function. Although [14] deals with integral weights, identity

multiplier system and the modular group, we remark that the identity also holds

for complex weights, arbitrary multiplier systems (still subject to υ (Sλ) = 1) and

all Hecke groups. (Also, the integrals there had rational period functions, but as

noted in [26], this distinction too is immaterial; the identity still holds if the period

functions are log-polynomials.) In fact, when f is analytic, we can easily show that

for each N ∈ Z+ ∪{0} there exists a polynomial pN of degree exactly N such that

ΦδN f (s) = pN (s) Φf (s − N ) , ∀s ∈ C. (5.2)

(Caution: This is not simply a consequence of inductive application of (5.1), since

that identity applied only to analytic f , not to such nonanalytic integrals as δNf.

Nevertheless, (5.2) is easily proved by induction.)

Now, by Theorem 3.2 with g = δNf we know that ΦδN f is bounded in lacunary

vertical strips with sufficiently large t0. In fact we may simply take t0 > max |Imαj|

again, where the α′
js are those associated with f and Φf , because the poles of

Φf , Φδf , Φδ2f , . . .do not increase in imaginary part. (By linearity of δ, the period

function qN of δNf is δN q0, where q0 is the period function of f .) If

q0 (z) =
J∑

j=1

Mj∑

t=0

βj,tz
αj (log z)t

,
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then

qN (iy) =
J ′∑

j=1

M ′
j∑

t=0

γj,t (iy)βj (log iy)t
,

where {βj} ⊆ {αj + ` | 1 ≤ j ≤ J, ` ∈ Z+} . This becomes clear if one applies

the product rule from calculus to the individual terms of q0 (z) .) By (5.2), then,

pN (s) Φf (s − N ) is bounded in lacunary vertical strips with large t0. But this

lower bound for t0 is independent of N, since

max
εj,N= poles of ΦδNf

|Imεj,N |

is nonincreasing in N . Thus |Φf (s)| ≤ AN |s|−N in those lacunary vertical strips.

Since N was arbitrary, |Φf (s)| = o
(
|s|−ρ

)
∀ρ > 0, and obviously then this holds

∀ρ ∈ R. �

Remark 5.1. There is actually a stronger estimate on Φf ( exponential decay)

which is used to prove the converse (B ⇒ A) Riemann-Hecke-Bochner Correspon-

dence (Theorem 3.1 Converse); however, that proof relies on Stirling’s Formula

and the Phragmén-Lindelöf Principle, both of which we have avoided in the proof

of Theorem 5.1 . Our proof uses only the Direct Theorem (A ⇒ B) of Theorem

3.2 . Thus, although the estimate applies to analytic automorphic integrals, it can

be proved using nonanalytic integrals.

The second application of Theorem 3.2 deals with the conjecture made in 1983

by Knopp [14]. We begin by recounting an earlier result from [13]:

Theorem 5.2. Let f be a modular integral with rational period function q, weight

k ∈ Z, and identity multiplier system. If q has poles in Q ∪ {∞}, then they are in

{0,∞} .
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(Thus q is a Laurent polynomial, and therefore a log-polynomial sum, which

shows the relevance of this theorem to our present situation.) Such period functions

were completely characterized in the same paper.

In [14], we have the following two theorems:

Theorem 5.3. Suppose f (z) =
∞∑

n=0
ane2πinz, an = O (nγ ) , γ > 0, as n → ∞,

is a modular integral with rational period function q, weight k ∈ 2Z and identity

multiplier system, such that the finite poles of q are rational (therefore = 0, by

Theorem 5.2). Consider the Mellin transform of (δkf) (z) − a0
z , defined by

Ψ (s) =

∞∫

0

{
(δkf) (iy) −

a0k

2iy

}
ys−1dy.

Ψ (s) has the form

Ψ (s) = (2π)−s

{
Γ (s) − k

2
Γ (s − 1)

} ∞∑

n=1

bnn−s

and can be continued to a function meromorphic in the entire s−plane, analytic

except for finitely many simple poles at rational integer values of s. Furthermore,

Ψ (s) satisfies the functional equation

Ψ (k + 2 − s) = e−
iπ
2 (k+2)Ψ (s) . (5.3)

Note: Ψ is bounded in all lacunary vertical strips not intersecting R.

Theorem 5.4. Conversely, suppose

Φ (s) = (2π)−s Γ (s)
∞∑

n=1

ann−s,

with the Dirichlet series converging in some half-plane. Suppose Φ (s) can be contin-

ued to a function meromorphic in the s−plane, analytic except possibly for finitely

many simple poles at rational integer values of s. Assume also that Φ (s) is bounded
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in every lacunary vertical strip not intersecting the real axis. Let

Ψ (s) = i

(
s − 1 − k

2

)
Φ (s − 1) ,

with k ∈ 2Z and suppose Ψ satisfies (5.3). Then for any a0 ∈ C, Ψ is the Mellin

transform of δkf − a0k
2z

, where f (z) =
∞∑

n=0
ane2πinz is a modular integral of weight

k, multiplier system ≡ 1, with rational period function having poles only at 0 and

∞.

Remark 5.2. In light of Theorem 5.2, we can view these last two theorems as

essentially a special case of Theorem 3.2 with f replaced by δkf, Ψ = Φδkf and

λ = 1. This fact is nonobvious, since in Theorem 5.4 the hypotheses refer partly to

Ψ and partly to Φ, instead of wholly to Ψ as in Theorem 3.2 . However, the fact

that Φ (s) is meromorphic in C with at worst simple poles in Z implies the same

property for Ψ (s); also, the boundedness condition on Φ implies a seemingly weaker

boundedness condition for Ψ which is nevertheless equivalent in the presence of the

other hypotheses. For, |Ψ (s)| ≤ A · |s| in lacunary vertical strips, and while this is

not quite the same as the statement of Theorem 3.2, the proof works equally well

since the step involving application of Stirling’s formula results in an estimate on

Ψ with exponential decay. Thus we can actually allow polynomial growth (and not

strictly boundedness) on Ψ without losing the Converse Theorem.

Remark 5.3. This is relevant to the more general setting. Both analytic and

nonanalytic Riemann-Hecke-Bochner Correspondence Theorems hold if we replace

the boundedness condition on the Mellin transform by polynomial growth, although

of course it must follow, then, that the stronger boundedness condition holds in the

presence of the functional equation and meromorphicity condition.

Thus, in Theorem 5.4 , we have
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Ψ (s) = i
(
s − 1 − k

2

)
Φ (s − 1)

= i
(

Γ(s)
Γ(s−1)

− k
2

)
Φ (s − 1)

= i
(

Γ(s)
Γ(s−1) −

k
2

)
(2π)−s+1 Γ (s − 1)

∞∑
n=1

ann−s+1

= (2π)−s Γ (s)
∞∑

n=1
(2πinan) n−s + (2π)−(s−1) Γ (s − 1)

∞∑
n=1

−ik
2 ann−(s−1),

so applying Theorem 3.2 (B ⇒ A) to Ψ, we do indeed obtain the conclusions of

Theorem 5.4.

As for Theorem 5.3, here δf has coweights α = k + 2 ∈ 2Z, β = 0 and period

function q (z) with q (iy) =
L∑

`=−L

d` (iy)`, so in the notation of Theorem 3.2 we have

Mj ≡ 0, {αj} ⊆ Z, M = 1, w1 = 0, and α, β ∈ Z. Thus by Theorem 3.2 and the

corollary, Ψ has the requisite meromorphic continuation, its poles are simple (since

Mj ≡ 0) and they are in Z (since α, β, wm, and αj are all rational integers). That

Ψ (s) = (2π)−s {
Γ (s) − k

2Γ (s − 1)
} ∞∑

n=1
bnn−s is a simple calculation.

In the same reference [14] we find the following

Conjecture. Theorem 5.4 still holds if we assume only that

Ψ (s) = (s − 1 + µ) Φ (s − 1) ,

and not necessarily that Ψ (s) =
(
s − 1 − k

2

)
Φ (s − 1) ; one can show that µ = −k

2

and then simply apply the earlier result (Theorem 5.4).

We will disprove this conjecture, by way of the following counterexample.

Example 5.1. Let k ∈ 2Z+, µ = 0 ( 6= −k
2) and put f (z) = a0 +

∞∑
n=1

ane2πinz,

with a0 a complex number and

an = 2
(2πi)k+1

n (k + 1)!
σk+1 (n)

for n ≥ 1, where σk+1 (n) =
∑

d|n, d>0

dk+1. Then,
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(δ−2µf) (z) = (δ0f) (z) = f ′ (z) = 2 (2πi)k+2

(k+1)!

∞∑
n=1

σk+1 (n) e2πinz

= Gk+2 − 2ζ (k + 2) ,

which is a modular integral of weight k + 2, υ ≡ 1 and trivial period function.

(‘Trivial’ in this sense means the modular integral differs from a modular form by

a constant term only.) Gt denotes the Eisenstein series of coweights t, 0:

Gt (z) =
∑

c,d∈Z, (c,d) 6=(0,0)

(cz + d)−t
.

Define the “slash” operator |α,β by

h |α,β M = (cz + d)−α (cz + d)−β
h (−1/z) ,

for h defined on H and M having lower row c, d. Since Gk+2 |1k+2,0 T = Gk+2, we

have

(δ−2µf) |1k+2,0 T = δ−2µf + 2ζ (k + 2)
(
1 − z−k−2

)
,

so by Theorem 3.2 the Mellin transforms Φ, Ψ of f, δ−2µf satisfy the hypothe-

ses of the conjecture; but f is not a modular integral of weight k, identity multi-

plier and Laurent polynomial period function. For, if that were true, then we would

have f |1k,0 T = f +
L∑

`=−L

c`z
`, and so z−kf

(−1
z

)
= f (z) +

L∑
`=−L

c`z
`. Differ-

entiate to get z−k−2f ′ (−1
z

)
− kz−k−1f

(−1
z

)
= f ′ (z) +

L∑
`=−L

`c`z
`−1. Since f ′ =

Gk+2 − 2ζ (k + 2) , we have z−k−2Gk+2

(−1
z

)
− 2z−k−2ζ (k + 2)− kz−k−1f

(−1
z

)
=

Gk+2 (z) − 2ζ (k + 2) +
L∑

`=−L

`c`z
`−1. Therefore, −kz−k−1f

(−1
z

)
=

L∑
`=−L

`c`z
`−1 +

2
(
z−k−2 − 1

)
ζ (k + 2) .

Replacing z by −1
z , we get that f, and therefore f ′ = Gk+2, is a Laurent polyno-

mial. But this is impossible since Gk+2 is a nonconstant periodic function. Thus

we obtain the desired contradiction, and so the conjecture fails in every positive

even weight.
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Actually, we could have used Theorem 3.1 (analytic Hecke correspondence), not

Theorem 3.2 (nonanalytic Hecke correspondence), here, since we are taking the

Mellin transform of the analytic function δ−2µf = Gk+2. However it should be

noted that we discovered this example using Theorem 3.2 (B ⇒ A) to narrow down

the possible options for a counterexample by increasing the number of conditions

such an example would have to satisfy. In effect, the conditions on Φ and Ψ (namely,

their functional equations) necessitated (δ−2µf) |1k+2,0 T = δ−2µf without having

µ = −k
2 ; this is exactly what led to the counterexample given here, i.e. using a

function which is an antiderivative of a modular integral.

Strictly speaking, the correspondence due to Bochner deals with a more general

class of exponential series than that described in Theorem 3.1; namely, it admits

two functions f and g satisfying

z−kg (−1/z) − Cf (z) = log-polynomial sum.

Here we state an analogous theorem for nonanalytic functions. Its proof is omit-

ted since it is virtually identical to that of Theorem 3.2. It is patterned after the

analytic version given in [19, 20].

Theorem 5.6 (Nonanalytic Hecke Correspondence for Two Functions).

Let λ1, λ2, γ > 0; C, α, β ∈ C; {wm}M1
m=1, {vm}M2

m=1, {an1,n2,m | 1 ≤ m ≤ M1,

0 ≤ n1, n2 < ∞}, {bn1,n2,m | 1 ≤ m ≤ M2, 0 ≤ n1, n2 < ∞} ⊆ C with wm distinct,

vm distinct and

∑

n1+n2=n

|an1,n2,m| ,
∑

n1+n2=n

|bn1,n2,m| = O (nγ) as n → ∞

for each fixed m ( γ is independent of m). Define
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cn,m =
∑

n1+n2=n

an1,n2,m,

dn,m =
∑

n1+n2=n

bn1,n2,m,

for n ∈ Z+ ∪ {0} . Put

f (z) =
M1∑

m=1

ywm

∞∑

n1,n2=0

an1,n2,m exp
{

2πi

λ1
(n1z − n2z)

}
,

g (z) =
M2∑

m=1

yvm

∞∑

n1,n2=0

bn1,n2,m exp
{

2πi

λ2
(n1z − n2z)

}
,

and let Φ (s) and Ψ (s) be defined as their respective Mellin transforms

Φ (s) =

∞∫

0

{
f (iy) −

M1∑

m=1

a0,0,mywm

}
ys dy

y
,

Ψ (s) =

∞∫

0

{
g (iy) −

M2∑

m=1

b0,0,myvm

}
ys dy

y
,

for Res large. (Thus, Φ (s) =
M1∑

m=1

(
2π
λ1

)−s−wm

Γ (s + wm)
∞∑

n=1
cn,mn−s−wm and

Ψ (s) =
M2∑

m=1

(
2π
λ2

)−s−vm

Γ (s + vm)
∞∑

n=1
dn,mn−s−vm.)

Then the following are equivalent:

(A) z−α (z)−β
g

(−1
z

)
= Cf (z) + axial log-polynomial sum.

(B) Φ, Ψ have meromorphic continuations to C, with at most a finite number of

poles; are bounded in lacunary strips (with the same restriction as before on t0, as

in Theorem 3.2); and satisfy Ψ (α + β − s) = iα−βCΦ (s) .

Although the Riemann-Hecke-Bochner Correspondence is often given this sort

of two-function setting, it is usually applied in the case f = g (Theorem 3.1). Here

we give an example where f 6= g:

It is easy to see that

∑

c,d∈Z, (c,d) 6=(0,0)

(cz + d)−k ≡ 0
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for k odd, k ≥ 3. However, if we consider instead

Ĝk (z) =
∞∑

c=1

∞∑

d=−∞

(cz + d)−k
,

̂̂
Gk (z) =

∞∑

c=−∞

∞∑

d=1

(cz + d)−k
,

then we have

z−kĜk

(
−1
z

)
= − ̂̂

Gk (z) .

This shows that Ĝk, ̂̂
Gk satisfy the hypotheses of the last theorem with α = k,

β = 0, λ1 = λ2 = 1 and that (A) holds with C = −1 and axial log-polynomial sum

= 0.

For an example with α, β nonzero, one may simply generalize to an example anal-

ogous to the Maass nonanalytic Eisenstein series which appears in [22], amending

the double-sum to the appropriate subsum as before.

6. Proof of Theorem 3.2

First we will require a lemma.

Lemma 6.1. With f, q as in Theorem 3.2, assume also that

f (iy) ≡/
M∑

m=1

co,mywm

for y > 0. Then C = ±iβ−α, and

Ci2(α−β)q (z)+(−z)−α (−z)−β
q (−1/z) = Ci2(α−β)q̂ (z)+(−z)−α

z−β q̂ (−1/z) = 0

for all z ∈ H, where q̂ is the (unique) analytic function on H with the property that

q (iy) = q̂ (iy) ∀y > 0. (I.e., q is a bona fide log-polynomial sum.)
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Proof. In the classical case, where q is analytic, this lemma is easier to prove;

one merely notes that a periodic log-polynomial sum is constant, and the desired

conclusion follows directly. Our nonanalytic q will require greater care.

Replacing z by −1
z

in the transformation law for f , we obtain

Cf (−1/z) + q (−1/z) = (−1/z)−α (−1/z)
(−β)

f (z) = (−z)α (−z)β
f (z) .

Thus,

f (z) = (−z)−α (−z)−β [Cf (−1/z) + q (−1/z)]

= (−z)−α (−z)−β [
Czαz(β) (Cf (z) + q (z)) + q (−1/z)

]

= Ci2(α−β) [Cf (z) + q (z)] + (−z)−α (−z)−β
q (−1/z) ,

for all z ∈ H, α, β ∈ C. (For Imz > 0, (−z)−α (−z)−β
zαz(β) = i2(α−β), by the

Open Mapping Theorem and its analog for conjugate-analytic functions.)

It follows that

[
1 − C2i2(α−β)

]
f (z) = Ci2(α−β)q (z) + (−z)−α (−z)−β

q (−1/z) , (6.1)

for Imz > 0. Put z = iy. Then,

[
1 − C2i2(α−β)

]
f (iy) = Ci2(α−β)q (iy) + (−iy)−α (iy)−β

q (−1/iy) ,

∀y > 0. By extending both sides of (6.1) analytically to H, we get

[
1 − C2i2(α−β)

]
h (z) = Ci2(α−β)q̂ (z) + (−z)−α

z−β q̂ (−1/z) for all z ∈ H, (6.2)

where

h (z) =
M∑

m=1

(−iz)wm

∞∑

n=0

cn,me2πinz/λ.

Therefore,

[
1 − C2i2(α−β)

] M∑

m=1

(−iz)wm

∞∑

n=1

cn,me2πinz/λ (6.3)
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= Ci2(α−β)q̂ (z) + (−z)−α
z−β q̂ (−1/z) −

[
1 − C2i2(α−β)

] M∑

m=1

co,m (−iz)wm ,

for all z ∈ H.

The right-hand side of (6.3) is a log-polynomial sum, while the left-hand side

decays exponentially as z → ∞ within any set of the form

Wθ =
{

z ∈ C : z 6= 0,
∣∣∣π
2
− arg z

∣∣∣ < θ
}

, 0 ≤ θ ≤ π

2
.

It is proved in [26] that any log-polynomial sum which satisfies such a limiting

condition must be identically zero. But

M∑

m=1

(−iz)wm

∞∑

n=1

cn,me2πinz/λ ≡/ 0 in H,

since, by hypothesis,

M∑

m=1

ywm

∞∑

n=1

cn,me−2πny/λ = f (iy) −
M∑

m=1

co,mywm ≡/ 0 in R+.

Thus, (6.3) implies that 1 − C2i2(α−β) = 0, which gives the first conclusion of the

lemma. This, in turn, implies the rest of the lemma, by (6.1) and (6.2). �

6.1. Proof of the Direct Theorem. With Lemma 6.1 in hand, we may begin

the proof of Theorem 3.2, A ⇒ B.

Assume A. If f (iy) ≡
M∑

m=1
co,mywm for y > 0, then Φf (s) ≡ 0 and B holds

trivially. Thus, we may assume f (iy) ≡/
M∑

m=1
co,mywm for y > 0.

That Φf is the Mellin transform of f −
M∑

m=1
co,mi−wmzwm = f −

M∑
m=1

co,mywm (as

stated in remarks following Theorem 3.2) is a consequence of Fubini’s Theorem.

For Res large, then,

Φf (s) =

∞∫

0

[
f (iy) −

M∑

m=1

co,mywm

]
ys−1dy =

∞∫

1

+

1∫

0

.
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Taking y 7→ 1
y

in the latter integral and then applying the transformation law for

f, we get

Φf (s) =
∞∫
1

[
f (iy) −

M∑
m=1

co,mywm

]
ys−1dy+

+
∞∫
1

{
(iy)α (−iy)β [Cf (iy) + q (iy)] −

M∑
m=1

co,my−wm

}
y−s−1dy

=
∞∫
1

[
f (iy) −

M∑
m=1

co,mywm

]
ys−1dy + iα−β

∞∫
1

[
f (iy) −

M∑
m=1

co,mywm

]
yα+β−s−1dy

+iα−β
∞∫
1

q (iy) yα+β−s−1dy+
M∑

m=1
co,m

(
iα−βC

∞∫
1

ywm+α+β−s−1dy −
∞∫
1

y−wm−s−1dy

)

=
∞∫
1

[
f (iy) −

M∑
m=1

co,mywm

]
ys−1dy + iα−β

∞∫
1

[
f (iy) −

M∑
m=1

co,mywm

]
yα+β−s−1dy

+iα−β
∞∫
1

q (iy) yα+β−s−1dy +
M∑

m=1
co,m

[
iα−βC

s−(α+β+wm ) −
1

s+wm

]
.

(Each of these integrals converges for Re s sufficiently large.) Therefore Φf =

E + L + r, whereE (s) =
∞∫

1

[
f (iy) −

M∑

m=1

co,mywm

]
ys−1dy + iα−β

∞∫

1

[
f (iy) −

M∑

m=1

co,mywm

]
yα+β−s−1dy,

L (s) = iα−β

∞∫

1

q (iy) yα+β−s−1dy

and

r (s) =
M∑

m=1

co,m

[
iα−βC

s − (α + β + wm)
− 1

s + wm

]
.

Since E (s) is absolutely uniformly convergent on compact subsets of C, it is

entire, by the integral analog of the Weierstrass M-test [29, p. 100]. Now, for Res

large,

L (s) = iα−β

∞∫

1

J∑

j=1

(iy)αj

Mj∑

t=0

βj,t (log iy)t
yα+β−s−1dy.

The integral and the finite double-sum may be switched, since each term is abso-

lutely integrable. Writing log iy = iπ
2

+ log y and applying the binomial theorem,

we obtain

L (s) =
J∑

j=1

iαj+α−β

Mj∑

t=0

βj,t

t∑

`=0

(
t

`

)(
iπ

2

)t−`
∞∫

1

yαj+α+β−s−1 (log y)`
dy.
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Observe that

∞∫

1

yη (log y)` = (−1)` `! (η + 1)−`−1 (6.4)

for ` ∈ Z+ ∪ {0} and Reη < −1, so that

L (s) =
J∑

j=1

iαj+α−β

Mj∑

t=0

βj,t

t∑

`=0

(
t

`

)(
iπ

2

)t−` (−1)`+1
`!

(αj + α + β − s)`+1
(6.5)

for Res > Re (α − β) + maxReαj. This shows that L is meromorphic in C with a

pole of order Mj + 1 at αj + α + β. (We assume, as always, that βj,Mj 6= 0 for all

j.) This proves part (i) of B in Theorem 3.2.

Next it will be shown that Φf satisfies the functional equation Φf (α + β − s) =

iα−βCΦf (s), s ∈ C. Clearly E and r satisfy this same functional equation, by their

very definitions; therefore it suffices to consider L (= Φf − E − r). By Lemma 6.1

(z = iy), we have
(
iα−βC

)2 = 1 and Ci2(α−β)q (iy)+(−iy)−α (iy)−β
q (−1/iy) = 0,

so that q (−1/iy) = −Ciβ−αyα+βq (iy). By the definition of L, then,

iα−βC · L (α + β − s) = i2(α−β)C
∞∫
1

q (iy) ys−1dy

= i2(α−β)C
0∫
1

q (i/y) y−s+1 dy
−y2

= i2(α−β)C
1∫
0

q (i/y) y−s−1dy

= i2(α−β)C
1∫
0

q (−1/iy) y−s−1dy

= −Ciβ−α
1∫
0

q (−1/iy) yα+β−s−1dy, by Lemma 6.1.

Thus iα−βC · L (α + β − s) = −iα−β
1∫
0

J∑
j=1

(iy)αj

Mj∑
t=0

βj,t (log iy)t
yα+β−s−1dy

= −iα−β
J∑

j=1

iαj

Mj∑
t=0

βj,t

1∫
0

yαj (log iy)t
yα+β−s−1dy,

where the interchange of integral and sum is justified as before.

Writing log iy = iπ
2

+ log y, substituting y 7→ 1
y

and applying (6.4) again, we get



24 PAUL C. PASLES

iα−βC · L (α + β − s) = iα−β
J∑

j=1

iαj

Mj∑
t=1

βj,t

t∑
`=1

(
t
`

) (
iπ
2

)t−`
`! (s − αj − α − β)−`−1

,

for Re s small; and since L is meromorphic in the plane, the preceding equation

holds in C. Comparing the earlier expression, one sees readily that

iα−βC · L (α + β − s) = L (s) .

This verifies the functional equation for L, and thus for Φf , proving (iii).

Finally, we come to the boundedness condition (ii). The rational functions L and

r are, of course, bounded in (closed) lacunary vertical strips which do not contain

poles of L or r. We have demonstrated that said poles are in {−αj} ∪ {−wm} ∪

{α + β + wm}. Thus, to prove (ii), it suffices to confirm the boundedness of E (s).

This is simple: if s ∈ L (σ1, σ2, t0) , then
∣∣∣∣
∞∫
1

[
f (iy) −

M∑
m=1

co,mywm

]
ys−1dy

∣∣∣∣

≤
M∑

m=1

∞∫
1

∞∑
n1,n2=0

[
|an1,n2,m| e−2π(n1+n2)y/λ − |a0,0,m|

]
yRe(wm+s)−1dy

=
M∑

m=1

∞∑
n=1

( ∑
n1+n2=n

|an1,n2,m|
) ∞∫

1

e−2πny/λyRe(wm+s)−1dy

≤ A1

M∑
m=1

∞∑
n=1

nγ
∞∫
1

e−2πny/λyRewm+σ2−1dy < ∞.

This proves part (ii) of B and completes the proof of the direct theorem.

6.2. Proof of the Corollary. We are now in a position to prove the corollary.

From the definition of L and the functional equation for q (Lemma 6.1),

L (s) = −i2(α−β)C−1

∞∫

1

q (−1/iy) y−s−1dy.

By calculations similar to those used previously, then,

L (s) = −i2(α−β)C−1
J∑

j=1

iαj

Mj∑

t=1

βj,t

t∑

`=1

(
t

`

) (
iπ

2

)t−`

`! (−αj − s)−`−1
, (6.6)

for Res small. Compare (6.5). Since E = Φf −L − r is entire, this proves the first

part of the corollary.
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Equations (6.5) and (6.6) also imply the set identity {−αj}J
j=1 = {αj + α + β}J

j=J .

Since the αj are distinct, then, we have the following:

• If J is even, ∃π ∈ SJ such that απ(j+1) = −απ(j) − α − β for j = 1, 3, ..., J − 1.

• If J is odd, ∃π ∈ SJ such that απ(j+1) = −απ(j) − α − β for j = 1, 3, ..., J − 2

and απ(J) = −απ(J) − α − β (i.e. απ(J) = −1
2 (α − β)).

with SJ denoting the symmetric group on J letters. (Also, of course, βj,t and βπ(j),t

are related.) Thus the exponent set of any axial log-polynomial period function is

{αj}J
j=1 =

{
η1, η2, . . . , ηbJ/2c

}
∪

{
η1 − α − β, η2 − α − β, . . . , ηbJ/2c − α − β

}
∪ S,

where S =





∅
{
−α+β

2

}
if J is even,

if J is odd.

This is actually a slightly stronger statement than was needed, and so this com-

pletes the proof of the corollary.

6.3. Proof of the Converse Theorem. It remains to be shown that B ⇒ A.

Using the identity e−y = 1
2πi

d+i∞∫
d−i∞

y−sΓ (s) ds, d > 0 [21] and a standard calcula-

tion, we can show that f is the inverse Mellin transform of Φf . For y > 0 and d large,

then, f (iy)−
M∑

m=1
co,mywm = 1

2πi

d+i∞∫
d−i∞

Φf (s) y−sds = iβ−α

2πiC

d+i∞∫
d−i∞

Φf (α + β − s) y−sds

= iβ−α

2πiC

α+β−d−i∞∫
α+β−d+i∞

Φf (s) ys−(α+β)d (−s) = iβ−α

2πiC · y−α−β
α+β−d+i∞∫
α+β−d−i∞

Φf (s) ysds.

Therefore,

f (iy)−
M∑

m=1

co,mywm =
1

2πiC
·(iy)−α (−iy)−β

α+β−d+i∞∫

α+β−d−i∞

Φf (s) ysds. (6.7)

Now,

α+β−d+i∞∫

α+β−d−i∞

Φf (s) ysds = lim
T→∞




d+iT∫

d−iT

+
∫

γ1(T )

+
∫

γ2(T )


−2πi·

∑

sν

Res (ysΦf ; sν) (6.8)
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(see Figure 2), choosing d and T large enough for the parallelogram shown to enclose

all of the poles sν of Φf ; recall that these are finite in number. (N.B.: In the classical

case, the contour is rectangular.)

For d large enough, both
∫

γ1(T )

and
∫

γ2(T )

→ 0 as T → ∞, by B (ii) and (iii),

together with the Phragmén-Lindelöf theorem [28] and Stirling’s formula. (To

satisfy the hypotheses of the former, we must consider instead of Φf the auxiliary

function e−πis/4Φf . This again contrasts with the proof of Theorem 3.1.)

By (6.7) and (6.8), then,

f (iy) −
M∑

m=1
co,mywm

= 1
2πiC (iy)−α (−iy)−β

[
d+i∞∫
d−i∞

Φf (s) ysds − 2πi ·
∑

poles sν of Φf

Res (ysΦf ; sν)

]
.

But f (iy) −
M∑

m=1
co,mywm = 1

2πi

d+i∞∫
d−i∞

Φf (s) y−sds for y > 0, so

f
(

−1
iy

)
−

M∑
m=1

co,mywm = 1
2πi

d+i∞∫
d−i∞

Φf (s) ysds. Thus,

f (iy) −
M∑

m=1
co,mywm

= C−1 (iy)−α (−iy)−β

[
f

(
−1
iy

)
−

M∑
m=1

co,mywm

]
−(iy)−α (−iy)−β·

∑
sν

Res (ysΦf ; sν) .

Say the pole set of Φf is {sν}V
ν=1 , and that the principal part of Φf at s = sν is

Aν∑
u=1

ην,u (s − sν)−u
. The residue of ysΦf (s) at s = sν is

Aν∑
u=1

ysν ην,u
(log y)u−1

(u−1)!
, and

so
V∑

ν=1
Res (ysΦf ; sν) =

V∑
ν=1

Aν∑
u=1

ysν ην,u
(log y)u−1

(u−1)! . Thus,

f (iy) −
M∑

m=1
c0,mywm = (iy)−α (−iy)−β

C−1

[
f

(
−1
iy

)
−

M∑
m=1

c0,my−wm

]

− (iy)−α (−iy)−β
C−1

V∑
ν=1

Aν∑
u=1

ysν ην,u
(logy)u−1

(u−1)! .

Therefore,

(iy)−α (−iy)−β
f

(
−1
iy

)
−Cf (iy) = −

M∑
m=1

c0,mywm +(iy)−α (−iy)−β
M∑

m=1
c0,my−wm

+iβ−α (iy)−α (−iy)−β
V∑

ν=1

Aν∑
u=1

ysν ην,u
(logy)u−1

(u−1)! ,
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and since ysν = (−i)sν (iy)sν and log y = log iy − iπ
2 for y > 0, we have that

(iy)−α (−iy)−β
f

(
−1
iy

)
− Cf (iy) is equal to a log-polynomial sum on iR+, so

z−α (z)−β
f

(−1
z

)
− Cf (z) is equal to an axial log-polynomial sum on H. Thus

A holds. (In the holomorphic case, one effects an analytic continuation from iR+

to H; for axial sums this is both impossible and, fortunately, unnecessary.)

This completes the proof of Theorem 3.2.
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