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Abstract. The subject of this paper is a class of functions which generalizes
the notion of automorphic integral in a useful way. Several well-known weight-

changing operators are adapted to apply to these integrals, and new operators
are given.

1. Introduction

Since its genesis over a century ago in work of Jacobi, Riemann, Poincaré and
Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a
branch of analytic number theory into an industry all its own. Natural extensions
of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing
Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonan-
alytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions
at once has also been the subject of some scrutiny. In the present study, inspired
by unpublished work of Knopp [Kn94], we consider the nonanalytic automorphic
integral.

2. Some definitions

We will use standard notation: Z, R, and C are the sets of integer, real, and
complex numbers, respectively; H denotes the upper half-plane {z ∈ C : Imz > 0};
and SL (2; R) is the group of real invertible 2 × 2 matrices. An action of SL (2; R)

on H is defined by V z = αz+β
γz+δ

, V =
[

α β
γ δ

]
∈ SL (2; R) . (Thus V z = (−V ) z.)

We will be concerned with a special family of subgroups of SL (2; R): For λ > 0,
the Hecke group is Gλ = 〈Sλ, T 〉 , where

Sλ =
[

1 λ
0 1

]
and T =

[
0 −1
1 0

]
.

Observe that Sλ = z + λ, T z = −1/z. It is a well-known fact that Gλ is (topo-
logically) discrete if and only if λ ≥ 2 or λ = 2 cos π

n , n = 3, 4, 5, . . .[He38, Ha99].
Special cases: G1 is called the modular group, G2 the theta group.

For z, w ∈ C, z 6= 0, define exponentiation by zw = ew log z; here log z = log |z|+
i arg z, where log |z| represents the principal branch (log 1 = 0), and arg z is taken in
the interval [−π, π) . We will make exceptions to this ‘unitary’ argument convention
in certain circumstances where it will be carefully noted that we observe a ‘binary’
convention, to be explained presently.
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It will be convenient for us to consider certain functions on the Hecke groups
which are analogous to a group character. We call υ : Gλ → C a multiplier system
on Gλ of coweights α, β ∈ C if |υ (Sλ)| = 1, υ (T ) 6= 0 and υ satisfies the consistency
condition

υ (M3) (c3z + d3)
α (c3z̄ + d3)

β

= υ (M1) (c1M2z + d1)
α (c1M2z̄ + d1)

β
υ (M2) (c2z + d2)

α (c2z̄ + d2)
β

for all M1, M2 ∈ Gλ, M1M2 = M3, Mj =
[

aj bj

cj dj

]
for j = 1, 2, 3, z ∈ H, where

we interpret the consistency condition according to the binary argument convention:

−π ≤ arg (cz + d) < π, −π < arg (cz + d) ≤ π,

for z ∈ H, c, d not both zero.

The binary convention guarantees that whenever c, d ∈ R and z ∈ H, it follows
that arg (cz + d) = − arg (cz + d) and therefore that log (cz + d)+log (cz + d) ∈ R.
The seemingly cumbersome dichotomy, which derives from the Petersson-Maass
tradition (e.g. [Ma64]), will prove convenient in many instances. For example, it
implies that υ is a multiplier system on Gλ of coweights α, β if and only if υ is a
multiplier system on Gλ of coweights α + ω + 2k, β + ω + 2` for all k, ` ∈ Z, ω ∈ C
[Pa98].

For the remainder of this work we focus mainly on the case υ (Sλ) = 1.
Definition 2.1. Let {an}∞n=0 be a sequence of complex numbers with (at worst)
polynomial growth in n. Put

f (z) =
∞∑

n=0

ane2πinz/λ,

for z ∈ H. Let υ be a multiplier system on Gλ of real coweights k, 0 with υ (Sλ) = 1.
If f satisfies the transformation law

z−kf (−1/z) = υ (T ) f (z) + q (z)

for all z ∈ H, where

q (z) =
J∑

j=1

zαj

T∑

t=0

βj,t (log z)t
,

αj, βj,t ∈ C, we say that f is an automorphic integral of coweights k, 0 and multiplier
system υ on Gλ. The function q(z) is called a log-polynomial sum (term coined by
D. Zeilberger).

An analytic automorphic integral is thus defined as a Fourier series, which may
be viewed instead as a power series in an exponential variable. Often one allows a
Laurent expansion here, at least in the case q ≡ 0, so that there are poles at the
cusps of the fundamental region (e.g. Klein’s J [Ap90]), and some authors define
a form so as to allow poles in H (e.g. [Kn93]), but we will generalize in a different
direction. Instead we shall relax the analyticity condition entirely.
Definition 2.2. Let {an1,n2,m | 0 ≤ n1, n2 < ∞, 1 ≤ m ≤ M} be a sequence of
complex numbers satisfying

∑

n1+n2=n

an1,n2,m = O (nγ) , γ > 0, as n → +∞.
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Put

f (z) =
M∑

m=1

∞∑

n1,n2=0

ywman1,n2,me
2πi
λ (n1z−n2z),

z = x+iy ∈ H. (Here w1, ...wM are complex numbers.) Let υ be a multiplier system
on Gλ of coweights α, β ∈ C, with υ (Sλ) = 1. If

z−αz−βf (−1/z) = υ (T ) f (z) + q (z)

for all z ∈ H, where

q (iy) =
J∑

j=1

(iy)αj

T∑

t=0

βj,t [log (iy)]t , y > 0,

we call f a nonanalytic automorphic integral of coweights α, β and multiplier system
υ on Gλ. The function q(z) is called an axial log-polynomial sum.

This reduces to the previous definition when M = 1, ω1 = 0, β = 0, α = k ∈ R,
and an1,n2,m = 0 for n2 6= 0. In fact, we will see in Section 5, that if f is analytic,
β must be zero.
Remark 2.1. The case α = −β ∈ Z, {ωm} ⊆ Z, an1,n2,m supported only when n1

or n2 = 0 appears in [Kn94], where a direct Hecke theorem was obtained for such
functions. There, a smaller class of period functions was allowed.
Remark 2.2. If λ = 1 in either of the preceding two definitions, replace auto-
morphic by modular ; if q (z) = 0 for all z ∈ H, replace integral with form. There
are several excellent contemporary expositions on the theory of forms [Kn93, Le64,
Le66, Ap90, Gu63, Ra77, Sc74, Iw97].
Remark 2.3. Definition 2.2 is motivated in part by certain differential operators
to be introduced in the next section. In short, if f is an analytic integral and
η is such an operator (appropriately chosen), then ηf is a nonanalytic integral.
Also, the class of nonanalytic integrals is itself closed under the application of these
operators. Aside from this invariance, the definition is also natural from the point
of view of the Hecke Correspondence [Pa99]. Finally, our notion of nonanalytic
integral encompasses such oft-studied examples as the nonanalytic Eisenstein series
which we will describe in Section 4.1.
Remark 2.4. It might seem that we should define an intermediate class of
functions, midway between the analytic and nonanalytic automorphic integrals.
Namely, insist on the shape of an analytic integral (exponential series) but allow
complex first coweight, nonzero second coweight and an axial log-polynomial pe-
riod function. However, we shall show in Theorem 5.1 that this simply results in
Definition 2.1 again, albeit with complex weight. In particular, we will show that
if

f (z) =
∞∑

n=0

ane2πinz/λ

and
z−αz−βf (−1/z) = Cf (z) + q (z) ,

where q is an axial log-polynomial sum, then either f is constant or β = 0. In either
case, then, f is simply an “automorphic integral of complex weight”.
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3. Weight-Changing Operators

This study of nonanalytic automorphic integrals is motivated in large part by
properties of functions obtained when one applies certain linear differential opera-
tors to analytic integrals. Let us survey these operators briefly.

We begin with the well-known weight-raising operator

δk =
d

dz
+

k

2iy
, k ∈ Z.

If f is an (analytic) modular integral of weight k and identity multiplier system
with rational period function q, then δkf is a nonanalytic modular integral of weight
k+2 with axial rational period function, that is, a real-analytic function of z and z
whose restriction to the imaginary axis is a rational function of z = iy. To be more
precise, the period function of δkf is δkq. Also, the Mellin transforms of f and δkf
are closely related [Kn83].

In fact, the restrictions on weight, group, multiplier system and analyticity are
unnecessary. Accordingly, for α, β ∈ C we define the first coweight-raising operator:

δα,β =
∂

∂z
+

α

2iy
.

Observe that if f is a nonanalytic automorphic integral with axial log-polynomial
period function q on Gλ of coweights α, β and multiplier system υ, then δα,βf is
a nonanalytic automorphic integral of coweights α + 2, β and multiplier system υ
with axial log-polynomial period function δα,βq on Gλ.

There is also a weight-lowering operator:

∂k = y2 ∂

∂z
,

which (together with δk) is applied to nonanalytic forms in [Fr85]. Unlike δk,
however, ∂k does not work on nonanalytic integrals if the second coweight is nonzero.
To adapt ∂k to the present circumstances we will put ∂α,β = y2 ∂

∂z + βiy
2 . (Compare

this with the definition of δα,β.) ∂α,β lowers the first coweight by 2; if f is a
nonanalytic automorphic integral with axial log-polynomial period function q on Gλ

of coweights α, β and multiplier system υ, then ∂α,βf is a nonanalytic automorphic
integral with axial log-polynomial period function ∂α,βq on Gλ of coweights α−2, β
and multiplier system υ.

Both δk and ∂k can be traced back ultimately to Maass’s classic work [Ma64].
The operators which will be useful for our purposes are summarized in Table 1.
Proofs of the various rules stated therein follow from straightforward calculations
based on

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
,

together with the binary argument convention and the consistency condition. As
usual, y = Imz.
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Operator Definition α, β → υ → If f is analytic, Φf →
δα,β

∂
∂z + α

2iy α + 2, β υ p (s + α)Φf (s − 1)

∂α,β y2 ∂
∂z + βiy

2 α − 2, β υ βi
2 Φf (s + 1)

δ̃α,β
∂
∂z − β

2iy α, β + 2 υ βi
2 Φf (s − 1)

∂̃α,β y2 ∂
∂z − αiy

2 α, β − 2 υ p (s + 1) Φf (s + 1)

Sw y−w α + w, β + w υ Φf (s + w)

Ç f → f β, α υ Φf (s)

ç z → −z β, α υ1 Φf (s)

Table 1

Here, α, β, w are arbitrary complex numbers; p (s) = i
(
s − 1 − α

2

)
; υ1 = υ ◦ ς,

where ς is the involution which negates the off-diagonal elements of M =
[

a b
c d

]
;

Φg denotes the Mellin transform of g:

Φg (s) =

∞∫

0

[
g (iy) −

M∑

m=1

a0,0,myωm

]
ys−1dy, Res large,

where g (z) =
∑M

m=1 yωm
∑∞

n1,n2=0 an1,n2,m exp
[
2πiλ−1 (n1z − n2z)

]
. (The con-

nection between the Mellin transforms of these functions, which are summarized
in the last column of the table, has several applications. Among these: a Hecke
correspondence for analytic integrals with a restricted set of rational period func-
tions [Kn83], and a growth estimate on the Mellin transforms of analytic integrals
[Pa99].) It is important to interpret exponents according to the binary argument
convention here, in order that we have

|cz + d|2w = (cz + d)w (cz + d)w

for all z ∈ H, w ∈ C and c, d ∈ R such that |c|+ |d| 6= 0.
Note that the first five operators in Table 1 have infinite order, while Ç and ç

have order 2. Also, these five operators preserve both υ and the set α−β+2Z. This
is no coincidence, in light of the remarks preceding Definition 2.1; for the multiplier
system to be preserved, the coweight-difference can change only by an even integer.

Analyticity is not, in general, preserved by these operators, the only nontrivial
exception being the composition Ç·ç.

As far as we know, ∂α,β, ∂̃α,β, δ̃α,β and Sw appear here for the first time, except
for S−k, k ∈ Z, which was applied to analytic integrals of weight 2k to construct
nonanalytic integrals of coweights k,−k and identity multiplier system in [Kn94].
Ç, ç have been used previously with nonanalytic integrals of real coweights α, β,
with β = −α [ibid.], in which case each operator preserves both coweights; and Ç
has been applied to forms with real coweights in [Ma64].
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Each operator in Table 1 preserves the shape of axial log-polynomial sums, and
therefore the coweights of a nonanalytic automorphic integral change as described
in the third column of the table.

It would appear that, armed with Table 1, we might generate an infinite supply
of nonanalytic examples by applying δ, ∂, etc. to analytic integrals; however, it
is appropriate to note first the limitations of such an approach, because of certain
algebraic relations. For example, if f is an (analytic) integral of coweights α, β and
multiplier system υ on Gλ, then apparently we have (at least) two constructions of
a nonanalytic integral of coweights α + 2, β: δα,βf, and Sα+2∂̃0,β−αS−αf. Unfor-
tunately, both constructions result in the same function; δα,β = Sα+2∂̃0,β−αS−α.
More generally, nontrivial relations among the operators are summarized below.

Relation α, β →
∂α,β = Sα−2δ̃0,β−αS−α α − 2, β

∂̃α,β = Sβ−2δα−β,0S−β α, β − 2

δα,β = Sα+2∂̃0,β−αS−α α + 2, β

δ̃α,β = Sβ+2∂α−β,0S−β α, β + 2

δα,β−2∂̃α,β = ∂̃α+2,βδα,β α + 2, β − 2

δ̃α−2,β∂α,β = ∂α,β+2δ̃α,β α − 2, β + 2

δα−2,β∂α,β = ∂α+2,βδα,β + (α − β) /4 α, β

∂̃α,β+2δ̃α,β = δ̃α,β−2∂̃α,β + (α − β) /4 α, β

δα,β+2δ̃α,β = δ̃α+2,βδα,β + (α − β) S2/4 α + 2, β + 2

∂̃α−2,β∂α,β = ∂α,β−2∂̃α,β + (α − β) S−2/4 α − 2, β − 2

δα,β = Sγ+2∂̃α−γ,εS−γ α + 2, β

δ̃α,β = Sγ+2∂ε,β+γS−γ α, β + 2

Table 2

(α, β, γ, ε are arbitrary complex numbers.) Fortunately, as we will show in the
next section, these relations do not impose a significant limitation on our ability to
generate a large and interesting class of examples.

4. Examples

4.1. Analytic integrals, weight-changing operators and Eisenstein series.
The space of nonanalytic automorphic integrals contains the subspace of analytic
integrals, so immediately we have a wealth of examples to draw on which have been
much discussed in the literature [Ei57, Kn83, Kn89a]. From these, one obtains many
more examples by application of the coweight-changing operators described in the
previous section, and still further by taking certain linear combinations or (in the
case of forms) products of these.
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Another example is the nonanalytic Eisenstein series of integer coweights, de-
fined by

Gα,β (z) =
∑

c,d∈Z

′ (cz + d)−α (cz + d)−β
,

where α, β ∈ Z, α + β > 2,
∑ ′ excludes the term (c, d) = (0, 0) and we interpret

c = 0 terms according to the binary argument convention. This is a nonanalytic
modular form of coweights α, β and identity multiplier system [Ma64]. (Note that
when α + β = 2, we may write a conditionally convergent Eisenstein series which is
a modular integral, unless α = β = 1, in which case the series is divergent for any
particular ordering [Hu81]. In particular, Hurwitz’s work demonstrates that

G2,0 (z) =
∑

c

{∑

d

′ (cz + d)−2

}

has identity multiplier system, coweights 2, 0 and period function −2πi/z. It follows
that

G0,2 (z) =
∑

c

{∑

d

′ (cz + d)−2

}

is conditionally convergent as well, and has identity multiplier system, coweights
0, 2 and period function 2πi/z. It also follows that

G1,1 (z) =
∑

c

{∑

d

′ |cz + d|−2

}

diverges.)

4.2. Dimensionality. Most treatments of modular or automorphic forms begin
with the analytic Eisenstein series or its cousin, the Poincaré series. Unfortunately,
this approach fails when one allows arbitrary complex coweights, since there are
convergence problems when α− β /∈ R [Pa98]. Instead we use a different approach
which utilizes the discriminant function ∆ (z), a modular form of weight 12 and
identity multiplier system, defined by

∆ (z) = e2πiz
∞∏

n=1

(
1 − e2πinz

)24
, Imz > 0.

In the classical theory of (analytic) modular forms, one can show that if k ∈ 2Z+,
then the space of entire forms of coweights k, 0 and identity multiplier system on
the full modular group has dimension

dk =





⌊
k
12

⌋
if k = 2 (mod12)

⌊
k
12

⌋
+ 1 if k 6= 2 (mod12).

[Ser70, Ap90]; (bxc denotes the greatest integer less than or equal to x). In fact,
for arbitrary real weight the space of entire forms is finite-dimensional and the
dimension is known [Le64].

In stark contrast to this cozy scene, the space of nonanalytic modular forms for
these same coweights and multiplier system is infinite-dimensional. We will prove
this in an even more general situation, by way of an explicit construction which
uses the weight-changing operators ∂, ∂̃, and Ç.
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Let M+ {λ, α, β, υ} be the space of nonanalytic automorphic forms on Gλ of
coweights α, β ∈ C and multiplier system υ, and let M0 {λ, α, β, υ} be the subspace
of forms which vanish as z → i∞ in |Rez| ≤ T, with T > 0 fixed. (In the analytic
case, these are called cusp forms.)

Theorem 4.1. If M+ {1, α, β, υ} 6= {0} , then dimC M0 {1, α, β, υ} = ∞.
The theorem follows from the next lemma.

Lemma 4.2. For ` ∈ Z+ ∪ {0} , put h` (z) = ∂̃6∂`+2 [G2`+4,0 (z) (Ç∆) (z)] . A
linearly independent set of nonanalytic modular forms of coweights 0, 0 and identity
multiplier system is given by {h` (z)}∞`=0. Moreover, h` (z) → 0 as z → i∞, | Rez| ≤
T.

Proof. For ` ∈ Z+ ∪ {0} , G2`+4,0 (z) ∆ (z) is a nonanalytic modular form of
coweights 2` + 4, 12 and multiplier system υ ≡ 1. By Table 1, then, h` (z) is a
nonanalytic form of coweights 0, 0.

In the present context,

∂̃6 = ∂̃0,2 · ∂̃0,4 · . . . · ∂̃0,12 =
(

y2 ∂

∂z

)6

= y12 ∂6

∂z6
+

5∑

j=1

cjy
6+j ∂j

∂zj

and

∂`+2 = ∂2,12 · ∂4,12 · . . . · ∂2`+2,12 · ∂2`+4,12 =
(

y2 ∂

∂z
+ 6iy

)`+2

= y2`+4 ∂`+2

∂z`+2
+

2`+3∑

m=1

ym
`+1∑

j=1

ε`,m,j
∂j

∂zj
+ p`+2 (y) .

(cj, ε`,m,j are complex constants, and p`+2 is a polynomial of degree ≤ `+2.) Also,
for z ∈ H,

G2`+4,0 (z) = 2ζ (2` + 4) +
2 · (2π)2`+4 (−1)`

(2` + 3)!

∞∑

n=1

σ2`+3 (n) e2πinz,

where

σk (n) =
∑

d|n, d>0

dk

and

ζ (b) =
∞∑

m=1

m−b

[Ap90]. Finally, by definition of the Ramanujan tau-function, we have

∆ (z) =
∞∑

n=1

τ (n) e2πinz, z ∈ H.

Hence,

∂`+2 [G2`+4,0 (z) (Ç∆) (z)]

= G2`+4,0 (z) ∂`+2 [(Ç∆) (z)]
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= G2`+4,0 (z)

[
y2`+4 ∂`+2

∂z`+2 +
2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j
∂j

∂zj + p`+2 (y)

] [
∆ (z)

]

= G2`+4,0 (z)

(
y2`+4 ∂`+2

∂z`+2 +
2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j
∂j

∂zj

)
∆ (z)

+p`+2 (y) G2`+4,0 (z) ∆ (z)

= G2`+4,0 (z)

(
y2`+4 ∂`+2

∂z`+2 +
2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j
∂j

∂zj

)
∞∑

n=1
τ (n) e−2πinz

+p`+2 (y) G2`+4,0 (z) ∆ (z).
Thus,

∂`+2 [G2`+4,0 (z) (Ç∆) (z)]

= G2`+4,0 (z) [y2`+4
∞∑

n=1
(−2πin)`+2

τ (n) e−2πinz

+
2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j

∞∑
n=1

(−2πin)j
τ (n) e−2πinz]

+p`+2 (y) G2`+4,0 (z) ∆ (z).
It follows, then, that

h` (z) = ∂̃6∂`+2 [G2`+4,0 (z) (Ç∆) (z)]

= ∂̃6

[
G2`+4,0 (z) y2`+4

∞∑
n=1

(−2πin)`+2 τ (n) e−2πinz

]

+∂̃6

[
G2`+4,0 (z)

2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j

∞∑
n=1

(−2πin)j τ (n) e−2πinz

]

+∂̃6
[
p`+2 (y) G2`+4,0 (z) ∆ (z)

]

=
∞∑

n=1
(−2πin)`+2 τ (n) e−2πinz∂̃6

[
y2`+4G2`+4,0 (z)

]

+
∞∑

n=1
(−2πin)j

τ (n) e−2πinz∂̃6

[
G2`+4,0 (z)

2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j

]

+∆ (z)∂̃6 [p`+2 (y) G2`+4,0 (z)] .
Therefore,
h` (z) =

=
∞∑

n=1
(−2πin)`+2

τ (n) e−2πinz

(
y12 ∂6

∂z6 +
5∑

j=1

cjy
6+j ∂j

∂zj

)
[
y2`+4G2`+4,0 (z)

]

+
∞∑

n=1
(−2πin)j

τ (n) e−2πinz

(
y12 ∂6

∂z6 +
5∑

j=1
cjy

6+j ∂j

∂zj

)
G2`+4,0 (z)

2`+3∑
m=1

ym
`+1∑
j=1

ε`,m,j

+∆ (z)

(
y12 ∂6

∂z6 +
5∑

j=1

cjy
6+j ∂j

∂zj

)
[p`+2 (y) G2`+4,0 (z)]

= y2`+16
[

∂6

∂z6 G2`+4,0 (z)
] ∞∑

n=1
(−2πin)`+2 τ (n) e−2πinz

+
2`+15∑
m=1

ym
∞∑

n1,n2=0
an1,n2,m (`) e2πi(n1−n2)z
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= y2`+16

[
2·(2π)2`+4(−1)`

(2`+3)!

∞∑
n=1

(2πin)6 σ2`+3 (n) e2πinz

] ∞∑
n=1

(−2πin)`+2
τ (n) e−2πinz

+
2`+15∑
m=1

ym
∞∑

n1,n2=0
an1,n2,m (`) e2πi(n1−n2)z.

Therefore, for y > 0,

h` (iy) =

= 23`+12π3`+12i`

(2`+3)! y2`+16
∞∑

n1,n2=1
n6

1n
`+2
2 σ2`+3 (n1) τ (n2) e−2π(n1+n2)y

+
2`+15∑
m=1

ym
∞∑

n=0
cn,m (`) e−2πny.

Thus, the coefficient of y2`+16e−2π(2y) in the expansion of h` (iy) is

(−2πi)3`+12

(2` + 3)!
6= 0,

while the coefficient of y2`+16e−2π(2y) in the expansion of h`0 (iy) is zero for all

`0 < `. By the uniqueness of the representation
M∑

m=1
ym

∞∑
n=0

dn,me−2πny (which is

easily checked!), this establishes the linear independence of the h`.

It remains to be shown that h` → 0 as z → i∞, |Rez| ≤ T. But we have already
seen that

h` (z) = e−2πiz
2`+16∑

m=1

ym
∞∑

n1,n2=0

an1,n2,m (`) e2πi(n1z−n2z)

for z ∈ H. Since e−2πiz → 0 and the rest of the expression approaches

2`+16∑

m=1

yma0,0,m (`) ,

the desired limit holds. (Note that an1,n2,m (`) satisfies the usual growth condi-
tion

∑
n1+n2=n |an1,n2,m (`)| = O (nγ) , because these coefficients are finite sums of

products of σ2`+3 (n1) and τ (n2), each of which exhibits polynomial growth.) �
Theorem 4.1 follows because if there exists a nonzero nonanalytic modular form

f on Gλ of coweights α, β and multiplier system υ, then f (z) h` (z) is a nonana-
lytic modular form associated with the same group, coweights and multiplier sys-
tem. (More generally, if f1 ∈ M+ {λ, α1, β1, υ1} and f2 ∈ M+ {λ, α2, β2, υ2} , then
f1f2 ∈ M+ {λ, α1 + α2, β1 + β2, υ1υ2} , a fact we have used implicitly already.)

Corollary 4.3. For k ∈ 2Z+, k > 2, dimC M0 {1, k, 0, 1} = ∞.
Proof. Gk,0 ∈ M+ {1, k, 0, 1} . �

4.3. A construction of nonanalytic forms for arbitrary complex coweights.
Next we will give an explicit construction, for given complex coweights, of nonan-
alytic forms on the theta group. First, suppose that Re α, Re β > 0. The classical
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theta function:

ϑ (z) =
∞∑

n=−∞
eπin2z,

z ∈ H, is a modular form of weight 1
2 on G2, with ϑ (−1/z) =

√
−izϑ (z). ϑ has the

infinite product representation

ϑ (z) =
∞∏

n=1

(
1 − e2nπiz

) (
1 + e(2n−1)πiz

)2

,

z ∈ H [Kn93]. It follows that ϑ is nonvanishing in H; ergo logϑ is a single-
valued analytic function. Since ϑ (−1/z) =

√
−izϑ (z) = e−iπ/4

√
zϑ (z), then,

logϑ (−1/z) = − iπ
4 + 1

2 log z + log ϑ (z) + 2πiA for some A ∈ Z. Putting z = i,

we get A = 0. Thus we have 2α log ϑ (−1/z) = − iπα
2 + α log z + 2α log ϑ (z) .

Exponentiation gives ϑ2α (−1/z) = e−iπα/2zαϑ2α (z) .

On the other hand, for y > 0, ϑ2α (iy) =
[ ∞∏

n=1

(
1− e−2nπy

) (
1 + e−(2n−1)πy

)2]2α

=
∞∏

n=1

(
1 − e−2nπy

)2α (1 + e−(2n−1)πy
)4α

, and so by the identity theorem ϑ2α (z) =
∞∏

n=1

(
1 − e2nπiz

)2α (1 + e(2n−1)πiz
)4α

. Thus ϑ2α (z + 2) = ϑ2α (z) , and we may con-

clude that ϑ2α is an analytic form of coweights α, 0 on G2 with multiplier system υ1

generated by υ1 (S2) = 1, υ1 (T ) = e−iπα/2 and the consistency condition. (For a
discussion of the Fourier coefficients of ϑ2α when α is real, see [Ma38, Si56, Kn86,
Kn89].)

By Table 1, then, ϑ2β has coweights 0, β and multiplier system υ2 generated
by υ1 (S2) = 1, υ1 (T ) = eiπβ/2. If we put f (z) = ϑ2α (z) ϑ2β (z), then f is
a nonanalytic form on the theta group of coweights α, β and multiplier system
υα,β generated by υα,β (S2) = 1, υα,β (T ) = eiπ(β−α)/2. Thus by Theorem 4.1,
dimC M0 {2, α, β, υα,β} = ∞.

To relax the assumptions on Reα and Reβ, merely apply the weight-lowering
operators ∂, ∂̃.

5. A theorem

Now we may prove Remark 2.4, which states that our definition of nonanalytic
integral is in some sense the most economical one which both encompasses known
examples and is closed under the coweight-changing operators.

Recall that the generalization from analytic to nonanalytic integrals considered
here is threefold: allow a second coweight, admit a broader class of period functions,
and give f a more general shape than simple exponential series. The next theorem
shows that the last of these is necessary to make our concept of nonanalytic integral
a meaningful one.

Theorem 5.1. For z ∈ H, define

f (z) =
∞∑

n=0

ane2πinz/λ,



12 PAUL C. PASLES

where an = O (nγ) , γ > 0, as n → +∞. Let υ be a multiplier system on Gλ of
coweights α, β ∈ C, with υ (Sλ) = 1. If

z−αz−βf

(
−1
z

)
= υ (T ) f (z) + q (z) for z ∈ H,

where q is an axial log-polynomial sum, then either β = 0 or f is constant.

Remark 5.1. The theorem holds even if f has the more general form

f (z) =
∞∑

n=0

ane2πi(n+κ)z/λ,

0 ≤ Reκ < 1, and our proof easily extends to this case. Our principal tools in the
proof are several operators from Table 1 and the next lemma:

Lemma 5.2. Let θ > 0. A log-polynomial sum which decays exponentially as
z → ∞ within a set of the form Wθ =

{
z ∈ C : z 6= 0,

∣∣π
2 − arg z

∣∣ < θ
}

is identically
zero. (See Figure 1).

Figure 1: w → i∞ in Wθ.

Proof. Let q (z) =
∑J

j=0 zαj
∑T

t=0 βj,t (log z)t
, where the αj are distinct com-

plex numbers, ordered lexicographically. That is, Re αj ≤ Re αj+1, and Im αj <
Im αj+1 if Re αj = Re αj+1, for j = 1, 2, . . . , J − 1. We will proceed by strong
induction on J.

The case J = 1 is not difficult. If q (z) = zα1
∑T

t=0 β1,t (log z)t → 0 exponentially
as z → ∞ in Wθ, then the same is true of

∑T
t=0 β1,t (log z)t

. Put ω = log z. Then∑T
t=0 β1,tω

t → 0 as ω → ∞ in the horizontal strip {ω ∈ C : θ ≤ Im ω ≤ π − θ} . But∑T
t=0 β1,tω

t is a polynomial, so it is identically zero. Thus q (z) ≡ 0.
Next we consider the case J > 1. It was proved by Hassen in [Ha 99] that

if c1, c2, . . . cN are complex numbers not all zero, u1, u2, . . .uN are distinct real
numbers and limz→∞ in C

∑N
j=1 cjz

iuj exists, then N = 1 and u1 = 0 (and thus
the sum is a constant). In fact, the same proof shows that a stronger result holds;
namely, if we assume only that limz→∞ in Wθ

∑N
j=1 cjz

iuj exists, then the same
conclusion holds.
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Since Re αj is increasing in j, we have maxj Re αj = Re αJ . Say Re αj = Re αJ

iff j ≥ j0. By assumption, q (z) → 0 exponentially as z → ∞ in Wθ, so the same is
true of z−αJ (log z)−T

q (z) =
∑J

j=1 zαj−αJ
∑T

t=0 βj,t (log z)t−T
. But

lim
z→∞ in Wθ

zαj−αJ (log z)t−T = 0

for j < j0. Therefore,
J∑

j=j0

zαj−αJ

T∑

t=0

βj,t (log z)t−T → 0.

Also, |zαj−αJ | is bounded for j ≥ j0, so
∣∣∣∣∣z

αj−αJ

T−1∑

t=0

βj,t (log z)t−T

∣∣∣∣∣ ≤
∣∣zαj−αJ

∣∣
T−1∑

t=0

|βj,t|
∣∣∣(log z)t−T

∣∣∣→ 0.

Thus limz→∞ in Wθ

∑J
j=j0

zαj−αJ βj,T = 0. Now we may apply the result of Hassen,
with uj = −iRe (αj − αJ ) ∈ R and cj = βj,T , to get βj,T = 0 for all j ≥ j0.

Thus q (z) =
∑j0−1

j=1 zαj
∑T

t=0 βj,t (log z)t +
∑J

j=j0
zαj

∑T−1
t=0 βj,t (log z)t

.

But z−αj (log z)−(T−1)
q (z) still has exponential decay, so as before we can show

that βj,T−1 = 0 for all j ≥ j0. Continuing in this fashion, we see that βj,t = 0 for
all j ≥ j0, 0 ≤ t ≤ T.

Then q (z) =
∑j0−1

j=1 zαj
∑T

t=0 βj,t (log z)t
, where j0 − 1 < J. By the induction

hypothesis, βj,t = 0 for 1 ≤ j ≤ j0 − 1, 0 ≤ t ≤ T. This completes the proof of the
lemma. �

Proof of Theorem 5.1. Let β ∈ C\ {0} . By Table 1, both ∂α,βf and S−1f are non-
analytic automorphic integrals on Gλ with multiplier system υ; ∂α,βf has coweights
α−2, β and period function ∂α,βq, while S−1f has coweights α−1, β−1 and period
function S−1q. Since f is analytic, ∂f

∂z = 0. Thus,

∂α,βf = y2 ∂f

∂z
+

βiy

2
f =

βiy

2
f =

βi

2
S−1f.

By the transformation laws for ∂α,βf and S−1f, then, we have:
zα−1zβ−1 [υ (T ) (S−1f) (z) + (S−1q) (z)]

= (S−1f)
(−1

z

)

= 2
βi (∂α,βf)

(−1
z

)

= 2
βiz

α−2zβ [υ (T ) (∂α,βf) (z) + (∂α,βq) (z)]

= zα−2zβ
[
υ (T ) (S−1f) (z) + 2

βi (∂α,βq) (z)
]
.

Therefore,
(
zα−1zβ−1 − zα−2zβ

)
υ (T ) (S−1f) (z) = zα−2zβ 2

βi (∂α,βq) (z)−zα−1zβ−1 (S−1q) (z) ,

and so

zα−2zβ−1 (z − z) υ (T ) (S−1f) (z) = zα−2zβ 2
βi (∂α,βq) (z)−zα−1zβ−1 (S−1q) (z) .

Thus,

(z − z) υ (T ) y f (z) = z 2
βi

(∂α,βq) (z) − z (S−1q) (z) ,



14 PAUL C. PASLES

i.e.,

f (z) = − i
2y−2υ (T )−1

[
z 2

βi (∂α,βq) (z) − z (S−1q) (z)
]
.

The right-hand side is an axial log-polynomial sum, while the left-hand side is
analytic. Thus it is in fact a log-polynomial sum. But the left-hand side approaches
a0 exponentially as z → ∞ within Wθ, 0 < θ < π

2 . By Lemma 5.2, then, both sides
are constant. �

Remark 5.2. In the sequel [Pa99], we present a Riemann-Hecke-Bochner corre-
spondence theorem for nonanalytic automorphic integrals, together with several
interesting applications.
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